You might be seeing more robots in restaurants, thanks to Texas-based RobotLAB. Photo courtesy of RobotLAB

Snazzy sombrero-wearing robots are gliding over to your table, carrying chips, salsa, and drinks, electronic eyes wide open on its interactive screen, ready to serve. The bot, provided by the new Houston franchise branch of RobotLAB Inc., debuted at Johnny Tamales Tex-Mex Cantina in Missouri City last week.

The restaurant's owner, Anil Patel, arranged for a one-month trial rental of the machine. But so far, he tells InnovationMap that he’s pleased with his “no-brainer” decision to add a small food delivery robot, which he says has huge marketing potential.

“I’m a sucker for technology. You look at it, and I think this is the future,” says Patel, who used to work in the health care industry.

That vision is shared by Elad Inbar, founder and CEO of Dallas-based RobotLAB, who in July expanded his company’s Texas franchise operations with the opening of a Houston branch.

“For many years, robots were toys — for geeks. You had to build them yourself, program them yourself,” Inbar says.

Elad Inbar is the founder and CEO of Dallas-based RobotLAB. Photo courtesy of RobotLAB

But the electronics revolution that brought handheld phones to the mainstream inspired Inbar to turn that concept to robotics when he formed RobotLAB in 2007.

“To me, this was completely a wake up call — seeing the market shift, and you know, bringing the opportunity to the mass market,” he says.

The company started by providing small robots to schools, and the company now works with two-thirds of the school districts in the country, Inbar says, touting that it is the "largest, most experienced" robotics company.

Keith Edwards, who owns RobotLAB’s Houston franchise with his brother Daniel, said his office aims to provide 50 robots in its first year of operation. While the use of robots has become more common globally, especially in Asian hotels and restaurants, for American business owners, robots are definitely not a standard decision, Edwards says.

The challenge lies in educating them about how robotics provides a solution for staffing shortages, Edwards says. With the touch of a button, the robot used in Patel’s restaurant can be programmed to sing happy birthday and deliver a dessert, or return dirty dishes back to the kitchen sink.

Through its franchisees, RobotLAB has already set up robots inside numerous restaurants, including eight food delivery models at four Houston locations of revolving sushi bar Kura Sushi.

Wings Over Frisco in the Dallas metro area and entertainment complex AREA 254 in Killeen also use RobotLAB food delivery robots. In August, the Tulsa International Airport introduced, on a trial basis, “Cloi,” another bot from RobotLAB, that guides visitors and has a selfie feature.

RobotLAB provides some 50 types of robots, Inbar says, ranging in function from cleaning, warehouse stacking, to food delivery, with plans and potential for more.

The company also has a presence in the senior living space, with a humanoid life-sized interactive robot named Pepper, that works with residents who suffer from dementia. While no Houston senior communities have yet come on board, Inbar says the company works with assisted living communities in Dallas, Wisconsin, New Jersey and Virginia.

One of RobotLAB's devices specializes in senior care facilities. Photo courtesy of RobotLAB

RobotLAB does not manufacture the robots, but provides the models, which can be purchased or leased. The company partners with manufacturers all over the world to provide the robots.

The cost to purchase a robot outright ranges widely, anywhere from $3,400 for an autonomous vacuum cleaner to $32,000 for a life-sized model, according to the website.

It provides one-on-one service for all aspects of implementation and any repair.

The proof of concept and related costs for the trial run for the Johnny Tamales robot was $2,990, Edwards says, which would apply toward a possible purchase of the $9,500 robot.

The daily labor cost, according to Inbar, for a food delivery robot amounts to about $15 to $17 a day, and for cleaning robots, about $27 a day.

The delivery robots run on a battery charge which lasts which lasts from nine to 13 hours, depending on the model. A cleaning robot does not last as long, but can clean 20,000 square feet on a single charge, Inbar says, and discharge dirty water, charge itself and return to work.

In the coming weeks, Inbar says he plans a demonstration with area firefighters at a training facility in Dallas, to show them bots that can clear debris, fight fires and help perform rescues.

The fastest-growing sector of his business now is the cleaning robot, as the service industry, in particular, struggles with labor challenges, Inbar says. The Houston office just sold its first cleaning robot, Edwards said.

“There is more demand for cleaning automation, simply because people don’t want to do the job anymore,” says Inbar. “We are hearing from everyone, in every market sector, from hotels, to assisted living facilities, to warehouses, you name it, supermarkets — even movie theaters. They can’t find people to clean. Putting that on autopilot, in a way, is the solution."

Edwards and Inbar say RobotLAB’s customized local service and connection provides the missing integration link for many business owners, who are intrigued by robots but may be way of what is involved with the equipment.

“We are basically the car dealership model of robotics,” Inbar says.

Christina Garavaglia, executive director of the Southeast Texas region of the Texas Restaurant Association, says the industry usually adapts cutting-edge technology early on, and robots are no exception.

“One of the primary reasons for this is that technology, hopefully, if it does what it’s intended, provides a lot of efficiency, and can help with some of the very tight margins that all of our restaurants work with,” she says.

Local restaurateurs have generally had positive reactions to robots, she says.

RobotLAB has food delivery robots rolling out in Houston. Photo courtesy of RobotLAB

Eric’s Restaurant at the Hilton University of Houston Hotel was the first Texas restaurant to introduce a robot two years ago, as part of its student training, Garavaglia says, adding that she expects more restaurateurs to come on board.

The industry has “barely scanned the surface” in leveraging the potential for robots to maximize efficiency and create a unique customer experience, she said.

Jim Lewis, president of AREA 254, a 45,000-square-foot entertainment complex in Killeen, purchased three robots from RobotLAB and began using them in January.

The robot keeps the food warm, in its enclosed shelves, and frees up the servers. One robot can carry up to four pizzas, and go from table to table in one trip, directed by a software system activated by the QR code order at the table. And, just as important for Lewis, the robots provide the “fun, cool factor.”

“People love it, and robots put smiles on people’s faces,” Lewis says. “My guess is that it will pick up a lot of steam, especially in the family entertainment space, where buildings are so big. The robot provides a very practical solution to moving food long distances.”

Inbar says his company does not want to replace human labor with his robots, rather enhance it and free up time for humans while filling a labor gap prompted by a shift that began in the wake of the COVID pandemic.

“This is where the challenge is. They need people to move boxes in warehouses, cook, and clean floors, so automation is the solution,” Inbar says.

Garavaglia says restaurant servers may even see their tips increase, as they can engage longer with customers as the robot handles other chores. The gap between the tip and the amount of work done to earn it would close, she explains.

Most high-end restaurants pride themselves on the customer experience, she said, and “that can only be provided by a human person.”

“Feeling a trust, sense of connection, that is really a human trait, a human characteristic. So long as that is the case, human servers and human employees will always be necessary,” she says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.