A Houston entrepreneur has brought in a technology to prevent major flood damage. Photo courtesy of HAR

Tasha Nielsen was on a trip to Denmark when she came across a Danish company making strides in flood prevention techniques.

"We were visiting family one day when we turn on the news and see FloodFrame's brand launch," Nielsen says. "The inventors live in Denmark, and they've done installations in Denmark, Germany and England, and they've been very successful."

That company partnered with the Danish Technological Institute and the Danish Hydraulic Institute and worked for years perfecting their flood prevention system. After Nielsen asked whether she could contract FloodFrame to install their system at her home back in Houston, she learned the founders weren't interested in coming over themselves to expand their business to the United States.

So, Nielsen took the reins to create the U.S. iteration of FloodFrame. The company provides flood protection to any building, including your home or business. And while it definitely takes inspiration from its European counterpart, Nielsen used her degree in civil engineering from Texas A&M — specifically her speciality in hydraulics, hydrology and storm design — to launch the business in one of the most flood-ravaged cities in the United States: Houston.

FLOODFRAME USAVideo via youtube.com

FloodFrame works by using buoyancy. A lightweight cloth is wrapped around a tube is installed underground outside the perimeter of your home or business. One end of that cloth is attached to a box that is also installed underground. As flooding begins, an automatic system will release the lids to deploy the inflation of the tube that will protect the structure. When the flood comes in, the system will float on top of the flood — kind of like a pool noodle — and protect the structure from the water.

FloodFrame adds a level of security during flooding events and can be considered more cost-effective when compared to the high cost of renovating or rebuilding after flooding.

"Right now we are focused on residential but I think there's a huge potential for it to go commercial. A lot of commercial buildings are self insured, and commercial developers, industrial developers, this would be a drop in the bucket for the overall cost of the entire project," Nielsen tells InnovationMap. "For homeowners, it's kind of a bigger expense, but I think there is the potential for homebuilders to include it as an option in the entire package of a new house because when you put it in to a mortgage, it's only another like $0.50 a month."

Nielsen and the company are wrapping up their time in MassChallenge Texas' inaugural Houston cohort, which concludes early September.

Two years after Harvey, Nielsen thinks the city of Houston is doing the right thing by having workshops and meetings in order to work on ways to redesign the city so flooding isn't an issue.

"I do think there needs to be a better plan for what happens next year, instead of trying to prevent what happens in 20 years," she says. "They're already doing that part; they're working on it. I think there just needs to be more of an emphasis on 'what can we actually do to help people right now.'"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.