A Houston entrepreneur has brought in a technology to prevent major flood damage. Photo courtesy of HAR

Tasha Nielsen was on a trip to Denmark when she came across a Danish company making strides in flood prevention techniques.

"We were visiting family one day when we turn on the news and see FloodFrame's brand launch," Nielsen says. "The inventors live in Denmark, and they've done installations in Denmark, Germany and England, and they've been very successful."

That company partnered with the Danish Technological Institute and the Danish Hydraulic Institute and worked for years perfecting their flood prevention system. After Nielsen asked whether she could contract FloodFrame to install their system at her home back in Houston, she learned the founders weren't interested in coming over themselves to expand their business to the United States.

So, Nielsen took the reins to create the U.S. iteration of FloodFrame. The company provides flood protection to any building, including your home or business. And while it definitely takes inspiration from its European counterpart, Nielsen used her degree in civil engineering from Texas A&M — specifically her speciality in hydraulics, hydrology and storm design — to launch the business in one of the most flood-ravaged cities in the United States: Houston.

FLOODFRAME USAVideo via youtube.com

FloodFrame works by using buoyancy. A lightweight cloth is wrapped around a tube is installed underground outside the perimeter of your home or business. One end of that cloth is attached to a box that is also installed underground. As flooding begins, an automatic system will release the lids to deploy the inflation of the tube that will protect the structure. When the flood comes in, the system will float on top of the flood — kind of like a pool noodle — and protect the structure from the water.

FloodFrame adds a level of security during flooding events and can be considered more cost-effective when compared to the high cost of renovating or rebuilding after flooding.

"Right now we are focused on residential but I think there's a huge potential for it to go commercial. A lot of commercial buildings are self insured, and commercial developers, industrial developers, this would be a drop in the bucket for the overall cost of the entire project," Nielsen tells InnovationMap. "For homeowners, it's kind of a bigger expense, but I think there is the potential for homebuilders to include it as an option in the entire package of a new house because when you put it in to a mortgage, it's only another like $0.50 a month."

Nielsen and the company are wrapping up their time in MassChallenge Texas' inaugural Houston cohort, which concludes early September.

Two years after Harvey, Nielsen thinks the city of Houston is doing the right thing by having workshops and meetings in order to work on ways to redesign the city so flooding isn't an issue.

"I do think there needs to be a better plan for what happens next year, instead of trying to prevent what happens in 20 years," she says. "They're already doing that part; they're working on it. I think there just needs to be more of an emphasis on 'what can we actually do to help people right now.'"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.