Known as Ike Dike, the proposed project received federal funding from U.S. Army Corps of Engineers. Photo courtesy

The Galveston’s Coastal Barrier Project recently received federal funding to the tune of $500,000 to support construction on its flood mitigation plans for the area previously devastated by Hurricane Ike in 2008.

Known as Ike Dike, the proposed project includes implementing the Galveston Bay Storm Surge Barrier System, including eight Gulf and Bay defense projects. The Bolivar Roads Gate System, a two-mile-long closure structure situated between Galveston Island and Bolivar Peninsula, is included in the plans and would protect against storm surge volumes entering the bay.

The funding support comes from U.S. Army Corps of Engineers (USACE) and will go toward the preconstruction engineering and design phase of Ecosystem Restoration feature G-28, the first segment of the Bolivar Peninsula and West Bay Gulf Intracoastal Waterway Shoreline and Island Protection.

Coastal Barrier Project - Galveston Projects

The project also includes protection of critical fish and wildlife habitat against coastal storms and erosion.

“The Coastal Texas Project is one of the largest projects in the history of the U.S. Army Corps of Engineers,” says Col. Rhett A. Blackmon, USACE Galveston District commander, in a statement. “This project is important to the nation for many reasons. Not only will it reduce risk to the vulnerable populations along the Texas coast, but it will also protect vital ecosystems and economically critical infrastructure vital to the U.S. supply chain and the many global industries located here.”

Hurricane Ike resulted in over $30 billion in storm-related damages to the Texas coast, reports the Coastal Barrier Project, and created a debris line 15 feet tall and 40 miles long in Chambers County. The estimated economic disruption due to Hurricane Ike exceeded $150 billion, FEMA reported.

The Coastal Texas Project is estimated to take 20 years to complete after construction starts and will cost $34.4 billion, reports the USACE.

------

Correction: This article previously reported the incorrect project valuation and timeline. It has been updated to reflect the corrrect information.

The funding announced Monday by the Commerce Department is part of a total investment in the cluster that, with private money, is expected to exceed $40 billion. Photo via Getty Images

Biden administration agrees to provide $6.4 billion to Samsung for making computer chips in Texas

tech development

The Biden administration has reached an agreement to provide up to $6.4 billion in direct funding for Samsung Electronics to develop a computer chip manufacturing and research cluster in Texas.

The funding announced Monday by the Commerce Department is part of a total investment in the cluster that, with private money, is expected to exceed $40 billion. The government support comes from the CHIPS and Science Act, which President Joe Biden signed into law in 2022 with the goal of reviving the production of advanced computer chips domestically.

“The proposed project will propel Texas into a state of the art semiconductor ecosystem,” Commerce Secretary Gina Raimondo said on a call with reporters. “It puts us on track to hit our goal of producing 20% of the world’s leading edge chips in the United States by the end of the decade.”

Raimondo said she expects the project will create at least 17,000 construction jobs and more than 4,500 manufacturing jobs.

Samsung's cluster in Taylor, Texas, would include two factories that would make four- and two-nanometer chips. Also, there would be a factory dedicated to research and development, as well as a facility for the packaging that surrounds chip components.

The first factory is expected to be operational in 2026, with the second being operational in 2027, according to the government.

The funding also would expand an existing Samsung facility in Austin, Texas.

Lael Brainard, director of the White House National Economic Council, said Samsung will be able to manufacture chips in Austin directly for the Defense Department as a result. Access to advanced technology has become a major national security concern amid competition between the U.S. and China.

In addition to the $6.4 billion, Samsung has indicated it also will claim an investment tax credit from the U.S. Treasury Department.

The government has previously announced terms to support other chipmakers including Intel and Taiwan Semiconductor Manufacturing Co. in projects spread across the country.

As a researcher, what is more important to you than a record of your research and scholarship? A Digital Persistent Identifier, or DPI, distinguishes you and your work from that of your peers. Graphic by Miguel Tovar/University of Houston

Research notes: Tips for navigating federal funding from the lab to the internet

houston voices

Every researcher needs a Digital Persistent Identifier.

As a researcher, what is more important to you than a record of your research and scholarship? A Digital Persistent Identifier, or DPI, distinguishes you and your work from that of your peers – and having one will be mandated for those receiving federal funding. Let’s take a deeper look at why this number is so important. We’ll also compare the different platforms— ORCID, Web of Science, Scopus and Google Scholar — so that you can be sure your publications, presentations, peer reviews and even information about who is citing you are being properly stored and accessed.

ORCID

There are many types of profiles and DPIs that can meet your needs, but there’s no silver bullet. Placing your work onto multiple platforms is necessary according to Andrea Malone, Research Visibility and Impact Coordinator at UH Libraries. She cautions researchers to “be realistic about how many identifiers you can maintain.”

The most popular is ORCID, which stands for Open Researcher and Contributor ID. It’s free to set up, and there is no chance of accidentally or on-purpose having multiple ORCID accounts – it’s assigned to you like a social security number and follows you, the researcher. This comes in particularly especially handy for researchers with common names.

An identifier is federally mandated for those receiving governmental funds. It is not specified that ORCID must be that identifier. For example, according to Malone: “a Web of Science profile also assigns an identifier, which would also satisfy the mandate.” But most researchers choose ORCID because it’s publicly available with no access restrictions.

While an ORCID number is free for researchers, there is a subscription fee for an institution to be associated with ORCID. Information will not pre-populate in an ORCID profile and it doesn’t track citation counts – it only shows what you put in. There are, however, linking wizards that allow you to link from Web of Science and Scopus to your ORCID account. If you choose this option, citations will automatically populate in your ORCID profile. It’s up to the researcher to doublecheck to be sure the information has automated, however.

Google Scholar

Google Scholar is a profile, not an identifier, so it does not comply with federal funding requirements. It is free, however, and it pulls from the open web. You can choose to have your list of articles updated automatically, review the updates yourself or manually update your articles at any time. Google Scholar also specifies which articles are open access. A PDF or HTML icon will appear on the righthand side of each citation for one to download articles.

Web of Science Vs. Scopus

Scopus is known for covering more journals and a wider range of metrics to evaluate research impact than Web of Science. Different platforms are a go-to for certain disciplines – for example, Web of Science is usually associated with hard sciences, although investigators in the social sciences and humanities also place their work on this platform from time to time. It’s a good idea to check out which platforms others in your discipline are using for their profiles.

Staying up-to-date

Of course, DPIs don’t work as intended unless researchers keep their profiles current. That means you need to check your profile after every publication and every time you switch to a new institution. Just as you would update your CV, you must update your ORCID or other DPI profile.

One tactic Malone suggests is setting a schedule either biweekly or monthly to check all your profiles. “One thing that’s helpful is that with all of them, you can set up alerts and create an alert as often as you want,” Malone goes on. “At that time, the program will scrawl the content within the source and alert you to anytime any of your publications appear in their database.”

The Big Idea

No one tool can paint a complete picture of all your scholarship. Be strategic and intentional about which platforms you use. Consider your audience, the platforms others in your discipline use and make sure you have an ORCID profile to comply with the federal mandate. But be careful not to sign up for more than you can feasibly maintain and keep current.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.


The project will focus on testing 5G networks for software-centric architectures. Photo via Getty Images

Rice lands federal funding for new 5G testing framework

money moves

A team of Rice University engineers has secured a $1.9 million grant from the U.S. Department of Commerce’s National Telecommunications and Information Administration to develop a new way to test 5G networks.

The project will focus on testing 5G networks for software-centric architectures, according to a statement from Rice. The funds come from the NTIA's most recent round of grants, totaling about $80 million, as part of the $1.5 billion Public Wireless Supply Chain Innovation Fund. Other awards went to Virginia Tech, Northeastern University, DISH Wireless, and more.

The project at Rice will be led by Rahman Doost-Mohammady, an assistant research professor of electrical and computer engineering; and Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering and chair of the Department of Electrical and Computer Engineering. Santiago Segarra, assistant professor of electrical and computer engineering and an expert in machine learning for wireless network design, is also a co-principal investigator on this project.

"Current testing methodologies for wireless products have predominantly focused on the communication dimension, evaluating aspects such as load testing and channel emulation,” said Doost-Mohammady said in a statement. “But with the escalating trend toward software-based wireless products, it’s imperative that we take a more holistic approach to testing."

The new framework will be used to "assess the stability, interoperability, energy efficiency and communication performance of software-based machine learning-enabled 5G radio access networks (RANs)," according to Rice, known as ETHOS.

Once created, the team of researchers will use the framework for extensive testing using novel machine learning algorithms for 5G RAN with California-based NVIDIA's Aerial Research Cloud (ARC) platform. The team also plans to partner with other industry contacts in the future, according to Rice.

“The broader impacts of this project are far-reaching, with the potential to revolutionize software-based and machine learning-enabled wireless product testing by making it more comprehensive and responsive to the complexities of real-world network environments,” Sabharwal said in the statement. “By providing the industry with advanced tools to evaluate and ensure the stability, energy efficiency and throughput of their products, our research is poised to contribute to the successful deployment of 5G and beyond wireless networks.”

Late last year, the Houston location of Greentown Labs also landed funds from the Department of Commerce. The climatetech startup incubator was named to of the Economic Development Administration's 10th cohort of its Build to Scale program and will receive $400,000 with a $400,000 local match confirmed.

Houston-based nonprofit accelerator, BioWell, also received funding from the Build to Scale program.
The fresh $3.3 billion for Texas will complement the $1.5 billion in state money that Texas lawmakers recently earmarked to improve broadband access. Photo via Getty Images

Texas secures $3.3B in federal funding to expand broadband internet

major investment

Texas is receiving over $3.3 billion in federal funding — more than any other state — to expand broadband internet access the state.

Much of that money undoubtedly will be pumped into the Houston metro area, where a little over 180,000 (about 7 percent) of the more than 2.6 million households have no internet access.

The National Telecommunications and Information Administration announced June 26 that the 50 states plus the District of Columbia and U.S. territories will share nearly $42.5 billion in broadband internet funding allocated under the federal Infrastructure Investment and Jobs Act. The law went on the books in 2021.

“This is a watershed moment for millions of people across America who lack access to a high-speed Internet connection. Access to Internet service is necessary for work, education, healthcare, and more,” Alan Davidson, assistant secretary of commerce for communication and information, says in a news release.

Previously, the federal government had announced more than $20 billion in separate broadband funding.

The fresh $3.3 billion for Texas will complement the $1.5 billion in state money that Texas lawmakers recently earmarked to improve broadband access. This November, Texans will vote on a constitutional amendment that would set up a state-run fund for the $1.5 billion.

All of the money will be geared toward bringing Texas’ internet infrastructure up to date. State data shows 7 million Texans in 2.8 million households lack broadband internet access.

The Federal Communications Commission says broadband internet access delivers a minimum download speed of 25 Mbps and minimum upload speed of 3 Mbps. Those are considered adequate speeds for a family of three or a business with five to 10 employees.

“Although that’s enough speed for basic internet use, it’s actually a bit slow by today’s standards, since many internet service providers offer 100Mbps speeds as basic-level plans,” HighSpeedInternet.com points out.

The Texas Broadband Development Office, which oversees the state’s broadband internet program, says high-speed internet access “is increasingly seen as a requirement for modern life.” State Comptroller Glenn Hegar, whose agency oversees the office, has said it will take $10 billion to deliver full broadband internet access in Texas.

The Broadband Development Office will oversee distribution of the broadband funding in Texas. It plans to start accepting grant applications in 2024.

Hegar says Texas received more broadband funding than any other state “because the challenge facing our state is unique.”

“Texas has a large population with a significant share of unserved areas spread over a vast and geographically diverse landscape. The bipartisan legislation that appropriated these funds recognized the importance of giving states the flexibility to meet the needs of their unique populations,” Hegar says in a news release.

U.S. Rep. Lizzie Fletcher, a Houston Democrat, has proposed legislation (the Broadband Incentives for Communities Act) that would help state and local governments take advantage of the infusion of broadband cash. She says these governments need money — in the form of federal grants — to hire and train employees, install software, and make other improvements so they can handle an expected flood of requests for broadband funding.

“Many of the communities that need broadband access the most have the fewest resources to implement these projects. We must ensure that they are not left behind while we make this monumental investment in the country’s broadband infrastructure,” Fletcher wrote in a June 14 letter to U.S. Commerce Secretary Gina Raimondo.

The White House aims to connect every American to affordable high-speed internet service by 2030. Today, an estimated 24 million Americans lack access to high-speed internet. Millions more deal with limited or unreliable service.

“High-speed Internet isn’t a luxury anymore; it’s become an absolute necessity,” President Joe Biden said at a White House event announcing the $42.5 billion in federal broadband funding.

“I’ve gotten letters and emails from across the country from people who are thrilled that after so many years of waiting, they’re finally going to get high-speed Internet,” Biden added.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

8+ can't-miss Houston business and innovation events in January

where to be

Editor's note: Kick off 2026 by hearing insightful talks and making meaningful connections in Houston's innovation scene. From networking workshops to presentations from major industry leaders, here's what not to miss and how to register. Please note: this article may be updated to include additional event listings.

Jan. 13 – Financing the Future

Hear from James Blake, head of capital markets at Fervo Energy, in this informative talk. Blake will cover the current investment landscape for geothermal power, how geothermal projects are structured and the role of policy incentives and innovative financing models in moving the industry forward. A small reception follows.

This event is Tuesday, Jan. 13, from 5:30-7:30 p.m. at the Ion. Register here.

Jan. 13 – Your Path to the Boardroom

Visit Sesh Coworking to hear from Keith Dorsey, an executive advisor and author of The Boardroom Journey, as he shares insights and lessons from hundreds of corporate board members and presents an actionable roadmap for women at every stage of their careers. Dorsey will speak on what "optimal diversity” means in the boardroom, how purpose-driven leaders sustain resilience under relentless pressure and why inclusive leadership is non-negotiable for growth and innovation.

This event is Tuesday, Jan. 13, from 6-8 p.m. at Sesh Coworking. Register here.

Jan. 14 — A Conversation with Dr. Wayne J. Riley on Leading Through Healthcare Transformation

Rice Business Partners will host Dr. Wayne J. Riley, president of SUNY Downstate Health Sciences University, for a moderated discussion with Dean Peter Rodriguez. Riley will share insights on leading complex healthcare organizations in an era of unprecedented industry challenges and reflect on his time at the Jones Graduate School of Business.

This event is Wednesday, Jan. 14, from 6:30-8:30 p.m. at McNair Hall on Rice University's campus. Register here.

Jan. 14 — VDW: Igniting Connections for Startup Success

Entrepreneurial communications instructor Diana Massaro will lead Lilie's latest Venture Development Workshop, focused on soft skills like clear communication, active listening and compelling introductions. Attendees will gain a personalized networking game plan and communication tools to turn casual encounters into meaningful relationships to support their ventures or careers.

This event is Wednesday, Jan. 14, from 6-7:30 p.m. at the Liu Idea Lab for Innovation and Entrepreneurship on Rice University's campus. Register here.

Jan. 21 — Upstream: Digital Tech Meetup

This month's Upstream: Digital Tech Meetup will explore how AI and real-time monitoring are being applied in safety-critical offshore environments, what’s working today, where the biggest gaps remain going into 2026 and how operators and service companies are approaching adoption. Expect to hear from leaders at NOV, Incom Solutions, Timbergrove and others.

This event is Wednesday, Jan. 21, from 8:30-10:30 a.m. at the Ion. Find more information here.

Jan. 22 — HEAD AND HEART: Leading Technology with Humanity While Everything Changes

Hear from Chris Hyams, former CEO of Indeed, at the latest installment of Rice's Master of Engineering Management & Leadership Seminar Series. Hyams will present on the intersection of technology, humanity and change—and how AI is reshaping all three.

This event is Thursday, Jan. 22, at 6 p.m. at Duncan Hall on Rice University's campus. Find more information here.

Jan. 22 – NASA Tech Talk

This month's NASA Tech Talks will feature a special delegation from the UK Science and Technology Network. Expect to hear from a panel of UK space experts, followed by a fireside chat featuring David Alexander, head of the Rice Space Institute, and Meganne Christian, ESA reserve astronaut and senior exploration manager.

This event is Thursday, Jan. 22, from 6-7 p.m. at the Ion. Find more information here.

Jan. 29 – Ignition Hub Startup Career Fair

Lilie will host the Ignition Hub Startup Career Fair this month in partnership with Rice University’s Center for Career Development and Career Development Office. The fair will bring together some of the most innovative, high-growth companies to offer Rice students exciting opportunities. Startups can apply to be considered for the fair. The event is open to Rice University undergraduate, graduate, MBA, and PhD students.

This event is Thursday, Jan. 29, at Grand Hall on Rice University's campus. Find more information here.

Jan. 29 – Health Policy Symposium: Value-Based Care & the Health Care Workforce

The Humana Integrated Health Systems Science Institute at the University of Houston will host its latest Health Policy Symposium this month, focused on the evolving landscape of value-based care and the importance of preparing and strengthening the health care workforce. Hear keynote addresses from leaders at Humana, UH, the American Medical Association and Houston Health Department.

This event is Thursday, Jan. 29, from 11:30 a.m.-1:30 p.m. at the Tilman J. Fertitta Family College of Medicine on Rice University's campus. Find more information here.

Jan. 30 — GHP Annual Meeting

The Greater Houston Partnership's premier event will highlight the region’s progress, honor visionary leadership and set the tone for the year ahead. Hear reflections from outgoing board chair, Gretchen Watkins (former -president of Shell USA); welcome incoming board chair, Armando Perez (EVP of H-E-B Houston); and more

This event is Friday, Jan. 30, from 11:30 a.m.-1:30 p.m. at Hilton Americas. Find more information here.

CPRIT CEO: Houston’s $2B in funding is transforming cancer research and prevention

fighting cancer

With its plethora of prestigious health care organizations like the University of Texas MD Anderson Cancer Center, UTHealth Houston, and the Baylor College of Medicine, Houston sits at the heart of cancer research and prevention in Texas.

Of course, it takes piles of cash to support Houston’s status as the state’s hub for cancer research and prevention. Much of that money comes from the Cancer Prevention and Research Institute of Texas (CPRIT).

Data supplied by CPRIT shows organizations in Harris County gained $2.3 billion in institute funding from 2009 through 2025, or nearly $145 million per year. That represents almost 60 percent of the roughly $4 billion that CPRIT has granted to Texas institutions over a 16-year period.

“The life sciences ecosystem that has developed and changed in Houston is phenomenal,” Kristen Doyle, who became the agency’s CEO in July 2024, tells InnovationMap. “In the next decade, we will look back and see a great transformation.”

That ecosystem includes more than 1,100 life sciences and biotech companies, according to the Greater Houston Partnership.

Houston plays critical role in clinical trials

Texas voters approved the creation of CPRIT in 2007. Twelve years later, voters agreed to earmark an extra $3 billion for CPRIT, bringing the state agency’s total investment in cancer research and prevention to $6 billion.

To date, CPRIT money has gone toward recruiting 344 cancer researchers to Texas (mainly to Houston) and has supported cancer prevention services for millions of Texans in the state’s 254 counties. CPRIT funding has also helped establish, expand, or relocate 25 cancer-focused companies. In Houston, MD Anderson ranks as the No. 1 recipient of CPRIT funding.

Regarding cancer research, Doyle says Houston plays a critical role in clinical trials.

“[Clinical trials are] something that CPRIT has focused on more and more. Brilliant discoveries are crucial to this whole equation of solving the cancer problem,” Doyle says. “But if those brilliant ideas stay in the labs, then we’ve all failed.”

Researchers conduct more clinical trials in Houston than anywhere else in the U.S., the Greater Houston Partnership says.

Doyle, a 20-year survivor of leukemia, notes that a minority of eligible patients participate in clinical trials for cancer treatments, “and that’s one of the reasons that it takes so long to get a promising drug to market.”

An estimated 7 percent of cancer patients sign up for clinical trials, according to a study published in 2024 in the Journal of Clinical Oncology.

MD Anderson takes on cancer prevention

Doyle also notes that Houston is leading the charge in cancer prevention.

“We get some national recognition for programs that have been developed in Houston that then can be replicated in other parts of the country,” she says.

Much of the work in Houston focusing on cancer prevention takes place at MD Anderson. The hospital reports that it has received more than $725 million from the CPRIT since 2007, representing approximately 18 percent of CPRIT’s total awards.

“These efforts can have profound impact on the lives of patients and their families, and this funding ensures our exemplary clinicians and scientists can continue working together to drive breakthroughs that advance our mission to end cancer,” Dr. Giulio Draetta, chief scientific officer at MD Anderson, said in a November news release, following the most recent CPRIT award for the hospital totaling more than $29 million.

CPRIT funding for Houston institutions supplements the more than $4.5 billion in federal funding for health and life sciences research and innovations that the Houston area received from 2020 to 2024, according to the Greater Houston Partnership.

“We are curing cancer every single day,” Doyle says of CPRIT. “Every step that we are taking — whether that’s funding great ideas or funding the clinical trials that are bringing promising drugs to Texas and to the world — we are making a difference.”

Houston energy tech co. breaks ground on low-cost hydrogen pilot plant

Coming Soon

Houston’s Lummus Technology and Advanced Ionics have broken ground on their hydrogen pilot plant at Lummus’ R&D facility in Pasadena, Texas.

The plant will support Advanced Ionics’ cutting-edge electrolyzer technology, which aims to deliver high-efficiency hydrogen production with reduced energy requirements.

“By demonstrating Advanced Ionics’ technology at our state-of-the-art R&D facility, we are leveraging the expertise of our scientists and R&D team, plus our proven track record of developing breakthrough technologies,” Leon de Bruyn, president and CEO of Lummus, said in a news release. “This will help us accelerate commercialization of the technology and deliver scalable, cost-effective and sustainable green hydrogen solutions to our customers.”

Advanced Ionics is a Milwaukee-based low-cost green hydrogen technology provider. Its electrolyzer converts process and waste heat into green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

Lummus, a global energy technology company, will operate the Advanced Ionics electrolyzer and manage the balance of plant systems.

In 2024, Lummus and Advanced Ionics established their partnership to help advance the production of cost-effective and sustainable hydrogen technology. Lummus Venture Capital also invested an undisclosed amount into Advanced Ionics at the time.

“Our collaboration with Lummus demonstrates the power of partnerships in driving the energy transition forward,” Ignacio Bincaz, CEO of Advanced Ionics, added in the news release. “Lummus serves as a launchpad for technologies like ours, enabling us to validate performance and integration under real-world conditions. This milestone proves that green hydrogen can be practical and economically viable, and it marks another key step toward commercial deployment.”

---

This article originally appeared on EnergyCapitalHTX.com.