Known as Ike Dike, the proposed project received federal funding from U.S. Army Corps of Engineers. Photo courtesy

The Galveston’s Coastal Barrier Project recently received federal funding to the tune of $500,000 to support construction on its flood mitigation plans for the area previously devastated by Hurricane Ike in 2008.

Known as Ike Dike, the proposed project includes implementing the Galveston Bay Storm Surge Barrier System, including eight Gulf and Bay defense projects. The Bolivar Roads Gate System, a two-mile-long closure structure situated between Galveston Island and Bolivar Peninsula, is included in the plans and would protect against storm surge volumes entering the bay.

The funding support comes from U.S. Army Corps of Engineers (USACE) and will go toward the preconstruction engineering and design phase of Ecosystem Restoration feature G-28, the first segment of the Bolivar Peninsula and West Bay Gulf Intracoastal Waterway Shoreline and Island Protection.

Coastal Barrier Project - Galveston Projects

The project also includes protection of critical fish and wildlife habitat against coastal storms and erosion.

“The Coastal Texas Project is one of the largest projects in the history of the U.S. Army Corps of Engineers,” says Col. Rhett A. Blackmon, USACE Galveston District commander, in a statement. “This project is important to the nation for many reasons. Not only will it reduce risk to the vulnerable populations along the Texas coast, but it will also protect vital ecosystems and economically critical infrastructure vital to the U.S. supply chain and the many global industries located here.”

Hurricane Ike resulted in over $30 billion in storm-related damages to the Texas coast, reports the Coastal Barrier Project, and created a debris line 15 feet tall and 40 miles long in Chambers County. The estimated economic disruption due to Hurricane Ike exceeded $150 billion, FEMA reported.

The Coastal Texas Project is estimated to take 20 years to complete after construction starts and will cost $34.4 billion, reports the USACE.

------

Correction: This article previously reported the incorrect project valuation and timeline. It has been updated to reflect the corrrect information.

The funding announced Monday by the Commerce Department is part of a total investment in the cluster that, with private money, is expected to exceed $40 billion. Photo via Getty Images

Biden administration agrees to provide $6.4 billion to Samsung for making computer chips in Texas

tech development

The Biden administration has reached an agreement to provide up to $6.4 billion in direct funding for Samsung Electronics to develop a computer chip manufacturing and research cluster in Texas.

The funding announced Monday by the Commerce Department is part of a total investment in the cluster that, with private money, is expected to exceed $40 billion. The government support comes from the CHIPS and Science Act, which President Joe Biden signed into law in 2022 with the goal of reviving the production of advanced computer chips domestically.

“The proposed project will propel Texas into a state of the art semiconductor ecosystem,” Commerce Secretary Gina Raimondo said on a call with reporters. “It puts us on track to hit our goal of producing 20% of the world’s leading edge chips in the United States by the end of the decade.”

Raimondo said she expects the project will create at least 17,000 construction jobs and more than 4,500 manufacturing jobs.

Samsung's cluster in Taylor, Texas, would include two factories that would make four- and two-nanometer chips. Also, there would be a factory dedicated to research and development, as well as a facility for the packaging that surrounds chip components.

The first factory is expected to be operational in 2026, with the second being operational in 2027, according to the government.

The funding also would expand an existing Samsung facility in Austin, Texas.

Lael Brainard, director of the White House National Economic Council, said Samsung will be able to manufacture chips in Austin directly for the Defense Department as a result. Access to advanced technology has become a major national security concern amid competition between the U.S. and China.

In addition to the $6.4 billion, Samsung has indicated it also will claim an investment tax credit from the U.S. Treasury Department.

The government has previously announced terms to support other chipmakers including Intel and Taiwan Semiconductor Manufacturing Co. in projects spread across the country.

As a researcher, what is more important to you than a record of your research and scholarship? A Digital Persistent Identifier, or DPI, distinguishes you and your work from that of your peers. Graphic byMiguel Tovar/University of Houston

Research notes: Tips for navigating federal funding from the lab to the internet

houston voices

Every researcher needs a Digital Persistent Identifier.

As a researcher, what is more important to you than a record of your research and scholarship? A Digital Persistent Identifier, or DPI, distinguishes you and your work from that of your peers – and having one will be mandated for those receiving federal funding. Let’s take a deeper look at why this number is so important. We’ll also compare the different platforms— ORCID, Web of Science, Scopus and Google Scholar — so that you can be sure your publications, presentations, peer reviews and even information about who is citing you are being properly stored and accessed.

ORCID

There are many types of profiles and DPIs that can meet your needs, but there’s no silver bullet. Placing your work onto multiple platforms is necessary according to Andrea Malone, Research Visibility and Impact Coordinator at UH Libraries. She cautions researchers to “be realistic about how many identifiers you can maintain.”

The most popular is ORCID, which stands for Open Researcher and Contributor ID. It’s free to set up, and there is no chance of accidentally or on-purpose having multiple ORCID accounts – it’s assigned to you like a social security number and follows you, the researcher. This comes in particularly especially handy for researchers with common names.

An identifier is federally mandated for those receiving governmental funds. It is not specified that ORCID must be that identifier. For example, according to Malone: “a Web of Science profile also assigns an identifier, which would also satisfy the mandate.” But most researchers choose ORCID because it’s publicly available with no access restrictions.

While an ORCID number is free for researchers, there is a subscription fee for an institution to be associated with ORCID. Information will not pre-populate in an ORCID profile and it doesn’t track citation counts – it only shows what you put in. There are, however, linking wizards that allow you to link from Web of Science and Scopus to your ORCID account. If you choose this option, citations will automatically populate in your ORCID profile. It’s up to the researcher to doublecheck to be sure the information has automated, however.

Google Scholar

Google Scholar is a profile, not an identifier, so it does not comply with federal funding requirements. It is free, however, and it pulls from the open web. You can choose to have your list of articles updated automatically, review the updates yourself or manually update your articles at any time. Google Scholar also specifies which articles are open access. A PDF or HTML icon will appear on the righthand side of each citation for one to download articles.

Web of Science Vs. Scopus

Scopus is known for covering more journals and a wider range of metrics to evaluate research impact than Web of Science. Different platforms are a go-to for certain disciplines – for example, Web of Science is usually associated with hard sciences, although investigators in the social sciences and humanities also place their work on this platform from time to time. It’s a good idea to check out which platforms others in your discipline are using for their profiles.

Staying up-to-date

Of course, DPIs don’t work as intended unless researchers keep their profiles current. That means you need to check your profile after every publication and every time you switch to a new institution. Just as you would update your CV, you must update your ORCID or other DPI profile.

One tactic Malone suggests is setting a schedule either biweekly or monthly to check all your profiles. “One thing that’s helpful is that with all of them, you can set up alerts and create an alert as often as you want,” Malone goes on. “At that time, the program will scrawl the content within the source and alert you to anytime any of your publications appear in their database.”

The Big Idea

No one tool can paint a complete picture of all your scholarship. Be strategic and intentional about which platforms you use. Consider your audience, the platforms others in your discipline use and make sure you have an ORCID profile to comply with the federal mandate. But be careful not to sign up for more than you can feasibly maintain and keep current.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.


The project will focus on testing 5G networks for software-centric architectures. Photo via Getty Images

Rice lands federal funding for new 5G testing framework

money moves

A team of Rice University engineers has secured a $1.9 million grant from the U.S. Department of Commerce’s National Telecommunications and Information Administration to develop a new way to test 5G networks.

The project will focus on testing 5G networks for software-centric architectures, according to a statement from Rice. The funds come from the NTIA's most recent round of grants, totaling about $80 million, as part of the $1.5 billion Public Wireless Supply Chain Innovation Fund. Other awards went to Virginia Tech, Northeastern University, DISH Wireless, and more.

The project at Rice will be led by Rahman Doost-Mohammady, an assistant research professor of electrical and computer engineering; and Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering and chair of the Department of Electrical and Computer Engineering. Santiago Segarra, assistant professor of electrical and computer engineering and an expert in machine learning for wireless network design, is also a co-principal investigator on this project.

"Current testing methodologies for wireless products have predominantly focused on the communication dimension, evaluating aspects such as load testing and channel emulation,” said Doost-Mohammady said in a statement. “But with the escalating trend toward software-based wireless products, it’s imperative that we take a more holistic approach to testing."

The new framework will be used to "assess the stability, interoperability, energy efficiency and communication performance of software-based machine learning-enabled 5G radio access networks (RANs)," according to Rice, known as ETHOS.

Once created, the team of researchers will use the framework for extensive testing using novel machine learning algorithms for 5G RAN with California-based NVIDIA's Aerial Research Cloud (ARC) platform. The team also plans to partner with other industry contacts in the future, according to Rice.

“The broader impacts of this project are far-reaching, with the potential to revolutionize software-based and machine learning-enabled wireless product testing by making it more comprehensive and responsive to the complexities of real-world network environments,” Sabharwal said in the statement. “By providing the industry with advanced tools to evaluate and ensure the stability, energy efficiency and throughput of their products, our research is poised to contribute to the successful deployment of 5G and beyond wireless networks.”

Late last year, the Houston location of Greentown Labs also landed funds from the Department of Commerce. The climatetech startup incubator was named to of the Economic Development Administration's 10th cohort of its Build to Scale program and will receive $400,000 with a $400,000 local match confirmed.

Houston-based nonprofit accelerator, BioWell, also received funding from the Build to Scale program.
The fresh $3.3 billion for Texas will complement the $1.5 billion in state money that Texas lawmakers recently earmarked to improve broadband access. Photo via Getty Images

Texas secures $3.3B in federal funding to expand broadband internet

major investment

Texas is receiving over $3.3 billion in federal funding — more than any other state — to expand broadband internet access the state.

Much of that money undoubtedly will be pumped into the Houston metro area, where a little over 180,000 (about 7 percent) of the more than 2.6 million households have no internet access.

The National Telecommunications and Information Administration announced June 26 that the 50 states plus the District of Columbia and U.S. territories will share nearly $42.5 billion in broadband internet funding allocated under the federal Infrastructure Investment and Jobs Act. The law went on the books in 2021.

“This is a watershed moment for millions of people across America who lack access to a high-speed Internet connection. Access to Internet service is necessary for work, education, healthcare, and more,” Alan Davidson, assistant secretary of commerce for communication and information, says in a news release.

Previously, the federal government had announced more than $20 billion in separate broadband funding.

The fresh $3.3 billion for Texas will complement the $1.5 billion in state money that Texas lawmakers recently earmarked to improve broadband access. This November, Texans will vote on a constitutional amendment that would set up a state-run fund for the $1.5 billion.

All of the money will be geared toward bringing Texas’ internet infrastructure up to date. State data shows 7 million Texans in 2.8 million households lack broadband internet access.

The Federal Communications Commission says broadband internet access delivers a minimum download speed of 25 Mbps and minimum upload speed of 3 Mbps. Those are considered adequate speeds for a family of three or a business with five to 10 employees.

“Although that’s enough speed for basic internet use, it’s actually a bit slow by today’s standards, since many internet service providers offer 100Mbps speeds as basic-level plans,” HighSpeedInternet.com points out.

The Texas Broadband Development Office, which oversees the state’s broadband internet program, says high-speed internet access “is increasingly seen as a requirement for modern life.” State Comptroller Glenn Hegar, whose agency oversees the office, has said it will take $10 billion to deliver full broadband internet access in Texas.

The Broadband Development Office will oversee distribution of the broadband funding in Texas. It plans to start accepting grant applications in 2024.

Hegar says Texas received more broadband funding than any other state “because the challenge facing our state is unique.”

“Texas has a large population with a significant share of unserved areas spread over a vast and geographically diverse landscape. The bipartisan legislation that appropriated these funds recognized the importance of giving states the flexibility to meet the needs of their unique populations,” Hegar says in a news release.

U.S. Rep. Lizzie Fletcher, a Houston Democrat, has proposed legislation (the Broadband Incentives for Communities Act) that would help state and local governments take advantage of the infusion of broadband cash. She says these governments need money — in the form of federal grants — to hire and train employees, install software, and make other improvements so they can handle an expected flood of requests for broadband funding.

“Many of the communities that need broadband access the most have the fewest resources to implement these projects. We must ensure that they are not left behind while we make this monumental investment in the country’s broadband infrastructure,” Fletcher wrote in a June 14 letter to U.S. Commerce Secretary Gina Raimondo.

The White House aims to connect every American to affordable high-speed internet service by 2030. Today, an estimated 24 million Americans lack access to high-speed internet. Millions more deal with limited or unreliable service.

“High-speed Internet isn’t a luxury anymore; it’s become an absolute necessity,” President Joe Biden said at a White House event announcing the $42.5 billion in federal broadband funding.

“I’ve gotten letters and emails from across the country from people who are thrilled that after so many years of waiting, they’re finally going to get high-speed Internet,” Biden added.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.

Houston chemist lands $2M NIH grant for cancer treatment research

future of cellular health

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”