The prototype features 60 micro-apartments per floor, or 1,140 residential units per building. Photo courtesy of Gensler

Downtown Houston has been fortunate to benefit from a transformation over the last couple of decades. Beautiful green spaces, luxury high-rises and hotels, restaurants, and updated arts and entertainment facilities are home to impressive art installations, farmers markets, major professional sporting events, and more. On the flip side of this, Houston’s central business district has seen a steep decline in commercial occupancy, struggling to bounce back to pre-COVID levels.

Houston is not alone in experiencing this situation. Nationwide, commercial vacancies are becoming increasingly noteworthy as the gap between residential rental rates and stagnant wages widens. Low-income earners, folks making between $20,000 and $30,000 annually (typically minimum wage employees, students and seniors living on Social Security), have been joining the ranks of the unhoused at an alarming rate due to the scarcity of affordable housing. Armchair economists and the like have been arguing for years that cities should repurpose these untapped resources into an opportunity to create dignified affordable housing that would keep those at risk off the streets and close to public transit options.

Pew Charitable Trust, along with international architectural firm Gensler, recently released their findings from a study on the subject — with Houston being one of two markets studied. The “Flexible Co-Living Housing Feasibility Study” found that converting Houston’s empty office buildings to communities of micro-apartments is, well, feasible.

“In the current climate of high construction costs, interest rates, building expenses, and rising rents, this project looks at the conventional office-to-residential conversion in a different way by leveraging the existing building infrastructure to reduce costs on a per unit basis,” Brooks Howell, principal architect at Gensler, tells CultureMap. “The result is a new housing typology, a co-living concept, that can provide affordable housing to the large and growing number of lower income single-person households in an urban context.”

The numbers
HUD reported that in 2024 homelessness was at an all-time high of 770,000 persons, up a staggering 18 percent from the prior year. Houston is on the low end of the national average, with a reported 3,270 homeless persons (4/10,000 Houstonians). CoStar data shows that Houston’s central business district contains 88 office buildings of over 50,000 square feet, 19 of which show reported vacancy rates of over 30 percent. As of November 2024, the median rent in Houston for an apartment was $1,297. The proposed rental rate for a furnished micro-apartment in a converted office building in downtown Houston is $700 — all inclusive, with zero move-in costs, as the units are fully furnished.

“The U.S. has a housing shortage of 4-7 million homes, which has driven rents to an all-time high and made it hard to save to buy a home,” Alex Horowitz, a project director for Pew Charitable Trust and a co-author of the study, adds. “Houston has one of the highest office vacancy rates in the U.S., but office layouts often don't work well for apartment conversions and carry high costs. This study finds that converting offices to dorm-style housing is cost-effective and can enable low rents — about $700 per month to live downtown. That could make a real difference for people struggling with high housing costs while revitalizing downtown.”

Co-living explained
Co-living is hardly a new concept. “Single room occupancy” dwellings, or SROs, were extremely common until about 1950. It’s worth noting that during the height of its popularity, homelessness was rare. The co-living model allows for a private furnished space, while bathrooms, kitchens, and laundry are shared facilities — much like a college dormitory. With 40 percent of renters being single occupants, this model promotes socialization and community, something that has been trending downward since the pandemic.

Wesley LeBlanc, principal analytics director for Gensler Chicago, adds that this elevated dorm situation is a “jumping off point for a number of models,” noting that there are six variations from the one in the study. LeBlanc encourages people to “Think beyond the conventional. A whole world of housing solutions come out of this.”

Office building apartment converstion floorplan rendering gensler Individual rooms share amenities such as larger living rooms, bathrooms, and kitchens.Courtesy of Gensler


What to expect in a typical converted building
The Pew/Gensler report proposes a prototypical building standard of 24 floors, 19 of which are residential, with 60 micro-apartments per floor, or 1,140 residential units per building. Each floor would offer six shared kitchen areas, five larger shared living spaces, two smaller shared living spaces tucked into interior hallways, two central shower areas with five private shower rooms each. Two shower rooms would include toilets and sinks, plus two additional toilet rooms with four toilets and two sinks. The total comes to 10 showers, 12 toilets, and 14 sinks per floor. Two laundry rooms, each with three washers and dryers, would also be available per floor.

The high cost of converting office buildings into fully plumbed, individual studio apartments can be cost prohibitive, leading a pragmatic Howell to ask: “What if we didn’t demo everything?” The utilization of existing centralized plumbing on each floor saves an average of 25-35 percent in construction costs that would arise from running new plumbing to each unit.

The ground floor would consist of a main lobby, management office, and 10,000 square feet of retail space. Floors two through four would be reserved for parking, while the fifth floor would offer 10,000 square feet of Class B office space as well as amenities like the gym.

While subsidies will be required for the conversion, the same will not be true once the development is out of the construction phase. The co-living model is projected to cost around one-third of the cost of converting an office building to individual studio apartments or constructing new affordable housing.

Office building apartment converstion unit rendering gensler An illustration of what a bedroom would look like.Courtesy of Gensler

Micro-apartments details
Each individual unit is designed to be 151 square feet, approximately the size of a modest hotel room. Furnishings include one extra-long twin bed (bedding included), a desk, chair, nightstand, standard-depth half-sized fridge, storage shelf, and cabinet. Units would have solid-core wooden doors and appropriate sound insulation — all for a tidy $700 per month.

Pricing has been a key factor in determining this configuration for affordable, urban housing. “Lowering the cost of housing to manageable levels enables residents to spend more on the other financial needs of their lives, which has broad implications for quality of life and well being,” LeBlanc explains.

---

This story originally appeared on our sister site, CultureMap.com.

BiVACOR and The Texas Heart Institute have celebrated a major milestone in the future of heart health. Photo courtesy of BiVACOR

Houston medical device startup implants artificial heart in first human patient

big win

Heart health tech company BiVACOR and The Texas Heart Institute announced that they successfully implanted the company's first Total Artificial Heart in a human at Baylor St. Luke’s Medical Center in the TMC.

The milestone is part of an FDA-approved early feasibility study that will test the safety and performance of the TAH device, which is based on a magnetically levitated rotor that takes over functions of a failing heart while a patient is awaiting a heart transplant, according to a statement from the organizations.

The "bridge-to-transplant" device could support an active adult male, as well as many women and children suffering from severe biventricular heart failure or univentricular heart failure.

"With heart failure remaining a leading cause of mortality globally, the BiVACOR TAH offers a beacon of hope for countless patients awaiting a heart transplant,” Dr. Joseph Rogers, president and CEO of THI and national principal investigator on the research, says in a statement. “We are proud to be at the forefront of this medical breakthrough, working alongside the dedicated teams at BiVACOR, Baylor College of Medicine, and Baylor St. Luke’s Medical Center to transform the future of heart failure therapy for this vulnerable population.”

BiVACOR received approval from the FDA for the early feasibility study in late 2023 and has four other patients enrolled in the study. At the time the study was approved, 10 hospitals were enrolled as possible sites.

“I’m incredibly proud to witness the successful first-in-human implant of our TAH. This achievement would not have been possible without the courage of our first patient and their family, the dedication of our team, and our expert collaborators at The Texas Heart Institute ... our TAH brings us one step closer to providing a desperately needed option for people with end-stage heart failure who require support while waiting for a heart transplant. I look forward to continuing the next phase of our clinical trial,” Daniel Timms, PhD, founder and CTO of BiVACOR, adds.

About 100,000 patients suffering from severe heart failure could benefit from BiVACOR’s artificial heart, the company says. Globally, only about 6,000 heart transplants are performed each year, while 26 million people worldwide are affected by heart failure.

BiVACOR was founded in 2008 and maintains its headquarters in Houston, along with offices in Huntington Beach, California, and Brisbane, Australia.

To date, the company has raised nearly $50.8 million, according to CB Insights. The company raised $18 million in 2023, and $22 million in 2021.

Earlier this year, BiVACOR named a new CEO in Jim Dillon, a longtime executive in the medical device sector.

Last summer, Rogers joined the Houston Innovators Podcast to share his excitement with THI's innovations.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space taps solar array developer for first space station module

space contract

Houston-based Axiom Space is making progress on developing its commercial space station.

The company awarded Florida-based Redwire Corporation a contract to develop and deliver roll-out solar array (ROSA) wings to power the Axiom Payload Power Thermal Module (AxPPTM), which will be the first module for the new space station.

AxPPTM will initially attach to the International Space Station. AxPPTM will later separate from the ISS and rendezvous with Axiom’s Habitat 1 (AxH1) on orbit. Eventually, an airlock, Habitat 2 (AxH2) and finally the Research and Manufacturing Facility (AxRMF) will be added to the first two Axiom modules.

AxPPTM is anticipated to launch toward the end of 2027. The two-module station (AxPPTM and AxH1) is expected to be operational as a free-flying station by 2028, and the full four-module station around 2030.

The modules will be integrated and assembled at Axiom Space’s Assembly and Integration facility, making them the first human-rated spacecraft built in Houston.

Redwire’s ROSA technology was originally developed for the ISS, according to Space News. It has yielded a 100 percent success rate on on-orbit performance. The technology has also been used on NASA’s Double Asteroid Redirection Test mission, the Maxar-built Power and Propulsion Element for the Artemis Lunar Gateway and Thales Alenia Space’s Space Inspire satellites.

“As a market leader for space power solutions, Redwire is proud to be selected as a strategic supplier to deliver ROSAs for Axiom Space’s first space station module,” Mike Gold, Redwire president of civil and international space, said in a news release. “As NASA and industry take the next steps to build out commercial space stations to maintain U.S. leadership in low-Earth orbit, Redwire continues to be the partner of choice, enabling critical capabilities to ensure on-orbit success.”

Greentown Houston to add new AI lab for energy startups

AI partnership

Greentown Labs has partnered with Shoreless to launch an AI lab within its Houston climatetech incubator.

"Climatetech and energy startups are transforming industries, and AI is a critical tool in that journey," Lawson Gow, Greentown's Head of Houston, said in a news release. "We're excited to bring this new offering to our entrepreneurs and corporate partners to enhance the way they think about reducing costs and emissions across the value chain."

Shoreless, a Houston-based company that enables AI adoption for enterprise systems, will support startups developing solutions for supply-chain optimization and decarbonization. They will offer Greentown members climate sprint sessions that will deliver AI-driven insights to assist companies in reducing Scope 3 emissions, driving new revenue streams and lowering expenses. Additionally, the lab will help companies test their ideas before attempting to scale them globally.

"The future of climatetech is intertwined with the future of AI," Ken Myers, Founder and CEO of Shoreless, said in a news release. "By launching this AI lab with Greentown Labs, we are creating a collaborative ecosystem where innovation can flourish. Our agentic AI is designed to help companies make a real difference, and we are excited to see the groundbreaking solutions that will emerge from this partnership."

Greentown and Shoreless will collaborate on workshops that address industry needs for technical teams, and Shoreless will also work to provide engagement opportunities and tailored workshops for Greentown’s startups and residents. Interested companies can inquire here.

Recently, Greentown Labs also partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator. It also announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site last month. Read more here.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston medical institutions launch $6M kidney research incubator

NIH funding

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.