A new cancer-fighting drug will move to clinical trials after being tested on Axiom's Ax-2 and Ax-3 missions. Photo courtesy Axiom Space.

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Houston Methodist's Dr. Ron Moses has created NanoEar, which he calls “the world’s smallest hearing aid.” Photo via Getty Images.

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.

EndoQuest Robotics secured an Investigational Device Exemption from the FDA for its clinical study. Photo via Getty Images

FDA greenlights Houston surgery robotics company's unique technology

headed to clinical trials

A Houston surgical robotics company has gotten a Investigational Device Exemption from the FDA to go forward with human trials.

This news allows EndoQuest Robotics to begin its Prospective Assessment of a Robotic-Assisted Device in Gastrointestinal Medicine (PARADIGM) study, which will be conducted at leading United States health care facilities, including Brigham and Women’s Hospital (Boston), Mayo Clinic (Scottsdale), Cleveland Clinic (Cleveland), AdventHealth (Orlando), and HCA Healthcare (Houston). The study will include surgeries on 50 subjects, who will hopefully begin to enroll in January.

“The foundational thesis is we're trying to make sure that the world's largest medical center is also the world's largest med tech innovation center,” Eduardo Fonseca, interim CEO of EndoQuest Robotics, tells InnovationMap.

His company is well on its way to helping to assure that, through making history of its own. EndoQuest is behind the world's first Flexible Robotic Surgical System, a technology that may one day transform surgery as we know it.

The idea to use these novel robots for surgery came from Dr. Todd Wilson, a surgeon at UTHealth Houston, who spent his medical education, residency, and fellowship at the institution.

“I had really focused in my practice on trying to do everything possible to improve outcomes for patients,” Wilson explains. “And there seemed to be a pretty good correlation that the smaller the incisions or the fewer incisions, the better patients would do.”

The stumbling block? The necessary small incisions are difficult for human surgeons to make with current technology. But UTHealth was part of the solution.

“Right there in the University of Texas was a microsurgical lab where they were focusing on trying to develop robotics, but the application was still a little bit fuzzy,” Wilson says.

Using their innovations to solve Wilson’s problem turned out to be the start of the company now known as EndoQuest Robotics.

The first indication for the system is for colon lesions. But in the future it could be used for practically any minimally invasive surgery (MIS). That means that the robots could help to perform anything from a tonsillectomy to cholecystectomy (gallbladder removal) to non-invasive colorectal procedures, should those lesions prove to be cancerous.

According to Fonseca, last year was the first on record that there were more MIS, including laparoscopic and robotic surgeries, than conventional ones in the U.S. The time is right to forge ahead with the flexible robotic surgical system. Days ago, the EndoQuest team announced that its Investigational Device Exemption (IDE) application for its pivotal colorectal clinical study was approved by the FDA.

“Our end point is a device that can be mass-manufactured and very safe for patients and has a short learning curve, so therefore, we intend to learn a lot during these trials that will inform our ultimate design,” says Fonseca.

He adds that it’s a “brilliant” group of engineers that has set EndQuest apart, including both teams in Houston and in South Korea.

“We can move twice as fast as anyone else,” jokes engineer Jiwon Choi.

Despite the extra brain power provided by the South Korea engineers, Fonseca says that EndoQuest’s beginnings are “as much of a Houston story as you could find.”

Dr. William Cohn is the chief medical officer for BiVACOR, a medical device company creating the first total artificial heart. Photo via TMC

Why this Houston medical device innovator is pumped up for the first total artificial heart

HOUSTON INNOVATORS PODCAST EPISODE 248

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show.

The difference with BiVACOR's device is it abandons the bladder approach. Cohn explains that as assist pumps evolved — something his colleague, Dr. Bud Frasier, had a huge impact on — they featured new turbine and rotor technology. Daniel Timms, BiVACOR's founder and CTO, iterated on this technology beginning when he was a postdoctoral student at Queensland University of Technology in Australia.

"BiVACOR is the first artificial heart that leverages what we learned from that whole period — it has no bladders, it has no valves. It has one moving part, and that moving part is suspended in an electromagnetic field controlled by a computer and changed thousands of times a second," Cohn says. "It will never wear out, and that's why we think it's the world's first total artificial heart."

The company is seeing momentum, celebrating its first successful human implantation last month. The device was used for eight days on a patient at Baylor St. Luke’s Medical Center before the patient received a heart transplant.

Cohn says that BiVACOR has plans to use the TAH as "bridge-to-transplant" device in several other surgeries and expects to get FDA approval for that purpose in the next three to four years before working toward clearance for total artificial heart transplants.

Cohn has worked to support medical device startups at CDI at TMC for the seven years it has existed — first under Johnson and Johnson and then under TMC when it took the program over. He describes the center and its location as the ideal place for developing the future of health care, with Houston rising up to compete with regions known for medical device success — both coasts and Minnesota.

"Being in the shadow of the largest medical center on the planet — 106,000 employees show up there every 24 hours," Cohn says, "if you want to innovate, this is the place to do it."

Procyrion has announced the closing of its series E round of funding. Photo via Getty Images

Houston medical device company secures $57.7M to fund journey to FDA approval, commercialization

fresh funding

Houston-born and bred medical device company, Procyrion, has completed its series E with a raise of $57.7 million, including the conversion of $10 million of interim financing.

Procyrion is the company behind Aortix, a pump designed to be placed in the descending thoracic aorta of heart failure patients, which has been shown to improve cardiac performance in seriously ill subjects. The money raised will allow the company to proceed with a the DRAIN-HF Study, a pivotal trial that will be used for eventual FDA approval and commercialization.

The Aortix is the brainchild of Houston cardiologist Reynolds Delgado. According to Procyrion’s CSO, Jace Heuring, Delgado, gained some of his experience with devices for the heart working with legendary Texas Heart Institute surgeon O.H. “Bud” Frazier. He filed his first patents related to the Aortix in 2005.

Heuring says that the first prototypes were built in 2011, followed by the final design in 2018. CEO Eric Fain, a California-based MD and with more than 30 years in the medical device industry, joined the company in 2018 ahead of the final design, primed to bring Aortix to the public. He visits the company’s Houston headquarters, across the street from Central Market, on a regular basis.

The device’s pilot study of 18 patients was completed in 2022. Those encouraging results paved the way for the current study, which will include an enrollment of 134 patients. The randomized study will seek to treat patients with acute decompensated heart failure. Half will be treated with standard-of-care therapy, the other half will be catheterized with an Aortix pump. A separate arm of the study will seek to treat end-stage heart failure patients who would otherwise be deemed too sick for either a transplant or an LVAD permanent pump. Fort-five healthcare centers in the United States will participate, including Texas Heart Institute.

“One of the key characteristics is [the patients] are retaining a lot of fluid,” explains Heuring in a video interview. “And when I say a lot, I mean it could be 25 or 30 or 40 pounds of fluid or more. When we put our pump in, one of the main goals is to reduce that fluid load.”

On average, about 11 liters of fluid came off of each patient. Many of those end-stage patients had previously been considered for both a heart and kidney transplant, but after using the Aortix, their kidneys responded so well that they were able to get only the heart transplant.

“These patients really are in dire straits and come into the hospital and today the only proven therapy to help these patients is to administer high doses of intravenous diuretic and some other cardiac drugs and in about 25 percent of patients those therapies are ineffective,” says Fain.

If Aortix gains approval, these sickest of the sick, usually consigned to hospice care, will have hope.

Thanks to the Series E, led by Houston’s Fannin Partners, returning investors, including Bluebird Ventures, the Aortix is inching closer to commercialization. Besides funding the DRAIN-HR study, Procyrion will also use the funds for internal programs to improve product manufacturability. One more step towards meaning advanced heart failure may not always be a death sentence.

Last month, Atul Varadhachary, managing director of Fannin, joined the Houston Innovators Podcast and alluded to Procyrion's raise. The company was born out of Fannin and still resides in the same building as Fannin.

Aortix is a pump designed to be placed in the descending thoracic aorta of heart failure patients. Photo via Procyrion

A Houston startup based out of the TMC Innovation Factory has announced funding and upcoming trials. Photo courtesy of TMC

Houston health tech startup secures $16M series A, prepares for first U.S. clinical trials

money moves

Fueled by fresh funding in the bank, a medical device startup has announced upcoming trials.

VenoStent, Inc., a company developing an innovative tool to improve outcomes for hemodialysis patients, has closed $16 million in a series A round of financing. Two Charleston, South Carolina-based firms — Good Growth Capital and IAG Capital Partners — led the round.

The company also announced it received Investigational Device Exemption from the FDA for its United States clinical trial, SAVE-FistulaS.

“Our mission at VenoStent is to improve the quality and length of life of dialysis patients. On the heels of our very promising results in several preclinical studies and a 20-patient feasibility study that led to our Breakthrough Designation last year, this recent IDE approval is perhaps our biggest milestone to date," Tim Boire, CEO of VenoStent, says in a news release. "We now enter an exciting new epoch in our company’s development that we believe will ultimately result in FDA Approval and vastly improve the quality and length of life for patients."

VenoStent's novel therapeutic medical device is a bioabsorbable wrap. Image courtesy of VenoStent

VenoStent's series A will fund the trial, expand manufacturing capabilities, and more. The company is targeting the more than 800,000 people in the U.S. with end-stage renal disease. Currently, more than half of the surgeries performed to initiate hemodialysis fail within a year. VenoStent's novel therapeutic medical device is a bioabsorbable wrap that reduces vein collapse by providing mechanical support and promoting outward vein growth.

“This trial is designed to provide the highest level of clinical evidence. We’re excited to be in this position to treat the first patients in the United States with this technology, and demonstrate the safety and efficacy of our device,” continues Boire in the release.

Per the release, the company is aiming for FDA Approval and be the first-to-market device to improve hemodialysis access surgery.

“We’re extremely pleased to be partnering with VenoStent on this critical mission. This company and technology are poised for commercial success to address a critical, unmet need,” says Bob Crutchfield, operating partner at Good Growth Capital, in the release.

The TMC Venture Fund also contributed to the series A investment round, along with SNR, Baylor Angel Network / Affinity Fund, Creative Ventures, Cowtown Angels, Alumni Ventures, and other notable angel investors. Past investors in VenoStent include KidneyX, National Science Foundation, National Institute of Health, Y Combinator, Health Wildcatters, and the Texas Halo Fund.

“VenoStent’s data and traction to date is impressive and gives us a lot of confidence in their continued success. We look forward to helping them get this Breakthrough product to market and help patients that are in dire need of this innovative technology,” says Joel Whitley, partner at IAG Capital Partners, in the release.

Tim Boire is the CEO of VenoStent. Photo via LinkedIn

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Baylor, Rice win $500,000 to launch humanities-driven health AI center

ethical AI

Baylor College of Medicine and Rice University have been awarded a $500,000 grant from the National Endowment for the Humanities (NEH) to create the Center for Humanities-based Health AI Innovation (CHHAIN).

The new center and three-year initiative aims to create ethically responsible and trustworthy AI for health care that uses history and patient narratives to shape the technology, according to a release. It represents a collaboration between the Center for Medical Ethics and Health Policy at Baylor and the Medical Humanities Research Institute at Rice. Ultimately, the researchers aim to establish a national model for integrating the humanities into the design and implementation of health AI.

Vasiliki Rahimzadeh, assistant professor at Baylor in the Center for Medical Ethics and Health Policy, and Kirsten Ostherr, director of the Medical Humanities Research Institute at Rice, will serve as co-directors of the new center, which will be housed within the Center for Medical Ethics.

The team will also engage in strategic collaborations with Kirstin Matthews, Rice’s Baker Institute for Public Policy and its fellow in science and technology policy, as well as Dr. Quianta Moore, executive director of the Meadows Mental Health Policy Institute. An interdisciplinary team of medical humanities and bioethics scholars from Baylor, Rice, and partners in the Houston area will complete the group.

“CHHAIN represents a bold new model for integrating the humanities into health innovation,” Ostherr said in a news release. “It will create a collaborative space where humanities scholars, patients, developers and clinicians can come together to explore the human dimensions of health AI—trust, narrative and lived experience. These are essential perspectives that are too often missing from technology development, and CHHAIN is designed to change that."

CHHAIN’s work will revolve around three key points:

  • Defining trustworthy AI through patient voices
  • Translating humanities insights into clinical AI settings
  • Public engagement and policy translation

“For AI to truly improve health outcomes, it must be designed with patient trust and wellbeing at its core,” Rahimzadeh said in the news release. “CHHAIN will provide a dedicated space to explore critical bioethics questions, such as how we ensure AI respects patient autonomy, addresses the needs of underserved communities and integrates meaningfully into clinical care. Our goal is to translate these insights into real-world health settings where AI is already shaping patient experiences."

CHHAIN's research mission was also developed thanks to pilot funding from the Margaret M. and Albert B. Alkek Department of Medicine at Baylor and a grant from Rice's Provost's TMC Collaborator Fund.

Texas A&M, the University of North Texas and the University of Texas at El Paso were also home to some of the 97 projects that received a portion of the $34.79 million in fundning from the NEH. See the full list here.

Houston booms as No. 2 U.S. market for retail construction in 2025

Construction Zone

Get ready for a gigantic cartload of new shopping opportunities in Houston. A new report indicates the equivalent of 21 Walmart supercenters is under construction in the region.

The report, published by commercial real estate services provider Lee & Associates, says Houston has nearly 3.9 million square feet of retail space under construction, making it the second most active market for new retail space in the U.S.

To put that in perspective, given the average Walmart supercenter measures 182,000 square feet, the 3.9 million-square-foot total would work out to 21 new supercenters being built in the region.

Dallas-Fort Worth is by far the most active U.S. market for new retail space; DFW leads more than 60 U.S. retail markets with nearly 7.15 million square feet of space under construction. The amount of retail space going up in DFW represents 15 percent of all retail space under construction in the more than 60 U.S. markets tracked by Lee & Associates.

Houston and Austin aren’t too far behind Dallas-Fort Worth, though.

Third-ranked Austin area has more than 3.4 million square feet of retail space being built.

What’s behind the surge in retail construction across Texas? Population growth.

Data recently released by the U.S. Census Bureau shows Houston was the second-fastest-growing metro from 2023 to 2024. DFW was the country’s third-fastest-growing metro from 2023 to 2024, based on the number of new residents, and Austin landed at No. 13.

---

This article originally appeared on CultureMap.com.

Intuitive Machines to acquire NASA-certified deep space navigation company

space deal

Houston-based space technology, infrastructure and services company Intuitive Machines has agreed to buy Tempe, Arizona-based aerospace company KinetX for an undisclosed amount.

The deal is expected to close by the end of this year, according to a release from the company.

KinetX specializes in deep space navigation, systems engineering, ground software and constellation mission design. It’s the only company certified by NASA for deep space navigation. KinetX’s navigation software has supported both of Intuitive Machines’ lunar missions.

Intuitive Machines says the acquisition marks its entry into the precision navigation and flight dynamics segment of deep space operations.

“We know our objective, becoming an indispensable infrastructure services layer for space exploration, and achieving it requires intelligent systems and exceptional talent,” Intuitive Machines CEO Steve Altemus said in the release. “Bringing KinetX in-house gives us both: flight-proven deep space navigation expertise and the proprietary software behind some of the most ambitious missions in the solar system.”

KinetX has supported deep space missions for more than 30 years, CEO Christopher Bryan said.

“Joining Intuitive Machines gives our team a broader operational canvas and shared commitment to precision, autonomy, and engineering excellence,” Bryan said in the release. “We’re excited to help shape the next generation of space infrastructure with a partner that understands the demands of real flight, and values the people and tools required to meet them.”

Intuitive Machines has been making headlines in recent weeks. The company announced July 30 that it had secured a $9.8 million Phase Two government contract for its orbital transfer vehicle. Also last month, the City of Houston agreed to add three acres of commercial space for Intuitive Machines at the Houston Spaceport at Ellington Airport. Read more here.