When it comes to 5G, Houston is setting itself up as a leader within the United States. Getty Images

Last year, Houstonians Clayton and Emily Harris became the first commercial 5G customers. Now, a full year later, the Houston has a major seat at the table that's discussing the advancement of 5G technology.

At a forum on Tuesday, October 1, hosted by CTIA and the Center for Houston's Future, experts discussed Houston's role in the conversation about 5G. Here are some overheards from the morning event.

“We cannot take our leadership in 4G for granted as we transition to 5G.”

— Senator Ted Cruz. Cruz's keynote address warns of the United States resting on its laurels in the race to 5G. While the country had the edge on foreign competition for 4G, that doesn't mean 5G will have the same result, he says. In fact, Cruz cites multiple studies that show China and South Korea lead the race in 5G. Deloitte's research found that China has outspent the U.S. by $24 billion and has built 350,000 new sites, while the U.S. has built fewer than 30,000. The study also showed China is prepared to invest $400 billion. This information aside, Cruz tells the crowd that America has the ability to win the race to 5G.

“I think it’s a wonderful story to see how Texas has been leading the way.” 

— Brendan Carr, FCC commissioner. Carr references the Harris family, as well as other Texas cities he's visited that have been working hard to advance 5G. For Carr, expanding and implementing 5G is a huge opportunity for job creation. "The U.S. isn't the only country in the world that wants these jobs," he says to the crowd. "They're not the only country that wants to see the half a trillion dollars in economic growth that's going to come from this next-generation technology."

“I’ll admit, I’m an optimist, but there are significant challenges to making this 5G future a reality.”

— Jesse Bounds, director of innovation for the city of Houston. Bounds cited a few obstacles to overcome. There's a need for massive investment in infrastructure to blanket cities in 5G, and telecom companies are expected to spend $8 billion over the next five years to build this infrastructure, and cities too will need to invest in smart city technology. Consumers will need to pay more for data, and US consumers pay some of the highest rates in the world already. Not to mention the fact that a third of Americans don't have access to home internet. "As we build the infrastructure of the future, we must do so in a way that closes the digital divide so that those Americans can enjoy the same level of opportunity and prosperity that we do," Bounds says.

"Houston’s 5G network performance is 17 times better than the 4G. That’s today, in the very early days of 5G.”

— Paul Challoner, vice president of network product solutions at Ericsson. Challoner tells the crowd that of course this affects speed of data transferring and that is a huge pro for the technology, but there are other important perks for 5G advancement. The tech also affects device density, meaning that, a very large city like Houston, might have issues in dense areas. 5G also improves connectivity in crucial situations, like in the case of a surgeon using a device during surgery. Lastly, Challoner mentioned 5G is the most advanced technology when it comes to cybersecurity.

"One area that I’m most excited about is all the things that we don't talk about. All the applications that haven't yet been imagined, that are being dreamt up by software developers in their dorm rooms."

— Mishka Dehghan, vice president of 5G development at Sprint. Dehghan points out that 10 years ago, no one could have imagined ride sharing, now that is a huge industry with developing technology thanks to mobile data usage. With with the onset of 5G, she says she can't wait to see what technology is created in the next 10 years.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.