Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

To remain the world leader in energy, Houston must ensure that every household has access to affordable and dependable power. Photo via Getty Images

Expert on Houston’s energy advantage: Building affordability, reliability for all

Guest Column

As the energy capital of the world, Houston has been at the forefront of innovation, powering industries and communities for generations. Many Houston families, however, are facing a reality that undermines our leadership: high energy bills and ongoing concerns about grid reliability.

Affordability and reliability are not just technical issues; they’re equity issues. To remain the world leader in energy, we must ensure that every household has access to affordable and dependable power.

Affordability: The First Step Toward Equity

According to the recent 2025 study by The Texas Energy Poverty Research Institute, nearly 80% of low- to moderate-income Houstonians scaled back on basic needs to cover electric bills. Rising costs mean some Houstonians are forced to choose between paying their utility bill or paying for groceries.

Additionally, Houston now has the highest poverty rate among America’s most populous cities. Energy should not be a privilege for only half of our city’s population. That’s why affordability needs to be at the center of Houston’s energy conversation.

Several practical solutions exist to help address this inequity:

  • We can increase transparency in electricity pricing and help families better understand their electricity facts labels to make smarter choices.
  • We can expand energy efficiency programs, like weatherizing homes and apartments, swapping out old light bulbs for LEDs, and adopting smart thermostats.
  • Incentives to help families invest in these changes can deliver long-term benefits for both them and apartment complex owners.

Many small changes, when combined, can add up to significant savings for families while reducing overall demand on the grid.

Reliability: A Shared Community Priority

The memories of Hurricane Beryl, Derecho, and Winter Storm Uri are still fresh in the minds of Texans. We saw firsthand the fragility of our grid and how devastating outages are to families, especially those without resources to handle extreme weather. Reliability of the grid is an issue of public health, economic stability, and community safety.

Houston has an opportunity to lead by embracing innovation. Grid modernization, from deploying microgrids to expanding battery storage, can provide stability when the system is under stress. Partnerships between utilities, businesses, and community organizations are key to building resilience. With Houston’s innovation ecosystem, we can pilot solutions here that other regions will look to replicate.

Energy Equity in Action

Reliable, affordable energy strengthens equity in tangible ways. When households spend less on utilities, they have more to invest in their children’s education or save for the future. When power is stable, schools remain open, businesses continue to operate, and communities thrive. Extending energy efficiency programs across all neighborhoods creates a fairer, more balanced system, breaking down inequities tied to income and geography.

Studies show that expanding urban green spaces such as community gardens and tree-planting programs can lower neighborhood temperatures, reduce energy use for cooling, and improve air quality in disadvantaged areas, directly reducing household utility burdens.

In Houston, for example, the median energy burden for low-income households is 7.1% of income, more than twice that of the general population, with over 20% of households having energy burdens above 6%.

Research also demonstrates that community solar programs and urban cooling investments deliver clean, affordable power, helping to mitigate heat stress and making them high-impact strategies for energy equity and climate resilience in vulnerable neighborhoods.

Public-Private Partnerships Make the Difference

The solutions to affordability and reliability challenges must come from cross-sector collaboration. For example, CenterPoint Energy offers incentives through its Residential and Hard-to-Reach Programs, which support contractors and community agencies in delivering energy efficiency upgrades, including weatherization, to low-income households in the greater Houston area.

Nonprofits like the Houston Advanced Research Center (HARC) received a $1.9 million Department of Energy grant to lead a weatherization program tailored for underserved communities in Harris County, helping to lower bills and improve housing safety

Meanwhile, the City of Houston’s Green Office Challenge and Better Buildings Initiative bring private-sector sponsors, nonprofits, and city leadership together to drive energy reductions across millions of square feet of commercial buildings, backed by training and financial incentives. Together, these partnerships can result in real impact that brings more equity and access to affordable energy.

BKV Energy is committed to being part of the solution by promoting practical, consumer-focused strategies that help families save money and use energy more efficiently. We offer a suite of programs designed to provide customers with financial benefits and alleviate the burden of rising electricity bills. Programs like BKV Energy’s demonstrate how utilities can ease financial strain for families while building stronger customer loyalty and trust. Expanding similar initiatives across Houston would not only lower household energy burdens but also set a new standard for how energy companies can invest directly in their communities.

By proactively addressing affordability, energy companies can help ensure that rising costs don’t disproportionately impact vulnerable households. These efforts also contribute to a more resilient and equitable energy future for Houston, where all residents can access reliable power without sacrificing financial stability.

Houston as a Blueprint

Houston has always been a city of leadership and innovation, whether pioneering the space race, driving advancements in medical research at the Texas Medical Center, or anchoring the global energy industry. Today, our challenge is just as urgent: affordability and reliability must become the cornerstones of our energy future. Houston has the expertise and the collaborative spirit to show how it can be done.

By scaling innovative solutions, Houston can make energy more equitable, strengthening our own community while setting a blueprint for the nation. As the energy capital of the world, it is both our responsibility and our opportunity to lead the way to a more equitable future for all.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

A new study puts Texas at No. 2 among the states most at risk for power outages this summer. Photo via Getty Images

Texas plugs in among states at highest risk for summer power outages in 2025

hot, hot, hot

Warning: Houston could be in for an especially uncomfortable summer.

A new study from solar energy company Wolf River Electric puts Texas at No. 2 among the states most at risk for power outages this summer. Michigan tops the list.

Wolf River Electric analyzed the number of large-scale outages that left more than 5,000 utility customers, including homes, stores and schools, without summertime electricity from 2019 to 2023. During that period, Texas experienced 7,164 summertime power outages.

Despite Michigan being hit with more summertime outages, Texas led the list of states with the most hours of summertime power outages — an annual average of 35,440. That works out to 1,477 days. “This means power cuts in Texas tend to last longer, making summer especially tough for residents and businesses,” the study says.

The Electric Reliability Council of Texas (ERCOT), which operates the electric grid serving 90 percent of the state, predicts its system will set a monthly record for peak demand this August — 85,759 megawatts. That would exceed the current record of 85,508 megawatts, dating back to August 2023.

In 2025, natural gas will account for 37.7 percent of ERCOT’s summertime power-generating capacity, followed by wind (22.9 percent) and solar (19 percent), according to an ERCOT fact sheet.

This year, ERCOT expects four months to surpass peak demand of 80,000 megawatts:

  • June 2025 — 82,243 megawatts
  • July 2025 — 84,103 megawatts
  • August 2025 — 85,759 megawatts
  • September 2025 — 80,773 megawatts

One megawatt is enough power to serve about 250 residential customers amid peak demand, according to ERCOT. Using that figure, the projected peak of 85,759 megawatts in August would supply enough power to serve more than 21.4 million residential customers in Texas.

Data centers, artificial intelligence and population growth are driving up power demand in Texas, straining the ERCOT grid. In January, ERCOT laid out a nearly $33 billion plan to boost power transmission capabilities in its service area.
Texans may still wonder whether the grid will keep them safe during a severe winter storm. Courtesy photo

Being prepared: Has the Texas grid been adequately winterized?

Being Prepared

Houstonians may feel anxious as the city and state experience freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

If we want to see real change, we need action by all parties. Photo via Getty Images

Texas vs the nation: Comparing energy grid resilience across America

guest column

The 2024 Atlantic hurricane season has proven disastrous for the United States. On July 8th, Hurricane Beryl barreled into Texas as a Category 1 storm knocking out power for nearly 3 million, causing over $2.5 billion in damages, and resulting in the deaths of at least 42 people.

More recently, Hurricanes Helene and Milton tore through the East Coast, dropping trillions of gallons of rain on Florida, Georgia, South Carolina, North Carolina, Virginia, and Tennessee, causing dams to collapse, flash flooding, trees to fall, millions of power outages, complete destruction of homes and businesses, and the deaths of hundreds.

Amidst the horror and rescue efforts, wariness of the increasing strength of natural disasters, and repeated failures of energy grids around the nation begs a few questions.

  1. Is there a version of a power grid that can better endure hurricanes, heat waves, and freezes?
  2. How does the Texas grid compare to other regional grids in the United States?
  3. What can we do to solve our power grid problems and who is responsible for implementing these solutions?

Hurricane-proof grids do not exist

There is no version of a grid anywhere in the United States that can withstand the brunt of a massive hurricane without experiencing outages.

The wind, rain, and flooding are simply too much to handle.

Some might wonder, “What if we buried the power lines?” Surely, removing the power lines from the harsh winds, rain, flying debris, and falling tree branches would be enough to keep the lights on, right?

Well, not necessarily. Putting aside the fact that burying power lines is incredibly expensive – estimates range from thousands to millions of dollars per mile buried – extended exposure to water from flood surges can still cause damage to buried lines. To pile on further, flood surges are likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

Heat waves and winter freezes are a different story

During extreme weather events like heat waves or winter freezes, the strain on the grid goes beyond simple issues of generation and distribution—it’s also a matter of human behavior and grid limitations.

Building and maintaining a power grid is extremely expensive, and storing electricity is not only costly but technically challenging. Most grids are designed with little "buffer" capacity to handle peak demand moments, because much of the infrastructure sits idle during normal conditions. Imagine investing billions of dollars in a power plant or wind farm that only operates at full capacity a fraction of the time. It’s difficult to recoup that investment.

When extreme weather hits, demand spikes significantly while supply remains relatively static, pushing the grid to its limits. This imbalance makes it hard to keep up with the surge in energy usage.

At the same time, our relationship with electricity has changed—our need for electricity has only increased. We’ve developed habits—like setting thermostats to 70 degrees or lower during summer heat waves or keeping homes balmy in winter— that, while comfortable, place additional strain on the system.

Behavioral changes, alongside investments in infrastructure, are crucial to ensuring we avoid blackouts as energy demand continues to rise in the coming years.

How the Texas grid compares to other regional grids

Is the Texas grid really in worse shape compared to other regional grids around the U.S.?

In some ways, Texas is lagging and in others, Texas is a leader.

One thing you might have heard about the Texas grid is that it is isolated, which restricts the ability to import power from neighboring regions during emergencies. Unfortunately, connecting the Texas grid further would not be a one-size fits all solution for fixing its problems. The neighboring grids would need to have excess supply at the exact moment of need and have the capacity to transmit that power to the right areas of need. Situations often arise where the Texas grid needs more power, but New Mexico, Oklahoma, Arkansas, and Louisiana have none to spare because they are experiencing similar issues with supply and demand at the same time. Furthermore, even if our neighbors have some power to share, the infrastructure may not be sufficient to deliver the power where it’s needed within the state.

On the other hand, Texas is leading the nation in terms of renewable development. The Lone Star State is #1 in wind power and #2 in solar power, only behind California. There are, of course, valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries.

Yet, the only state with more utility-scale storage than Texas is California.

In recent years, ERCOT has pushed generators and utility companies to increase their winterization efforts, incentivize the buildout of renewables and electricity storage. You might have also heard about the Texas Electricity Fund, which represents the state’s latest effort to further incentivize grid stability. Improvements are underway, but they may not be enough if homeowners and renters across the state are unwilling to set their thermostats a bit higher during extended heatwaves.

How can we fix the Texas grid?

Here’s the reality we must face – a disaster-proof, on-demand, renewable-powered grid is extremely expensive and cannot be implemented quickly. We must come to terms with the fact that the impact of natural disasters is unavoidable, no matter how much we “upgrade” the infrastructure.

Ironically, the most impactful solution out there is free and requires only a few seconds to implement. Simple changes to human behavior are the strongest tool we have at our disposal to prevent blackouts in Texas. By decreasing our collective demand for electricity at the right times, we can all help keep the lights on and prices low.

During peak hours, the cumulative effort is as simple as turning off the lights, turning the thermostat up a few degrees, and running appliances like dishwashers and laundry machines overnight.

Another important element we cannot avoid addressing is global warming. As the temperatures on the surface of the earth increase, the weather changes, and, in many cases, it makes it more volatile.

The more fossil fuels we burn, the more greenhouse gases are released into the atmosphere. More greenhouse gases in the atmosphere leads to more volatile weather. Volatile weather, in turn, contributes to extreme grid strain in the form of heat waves, winter freezes, and hurricanes. This is no simple matter to solve, because the energy needs and capabilities of different countries differ. That is why some countries around the globe continue to expand their investments in coal as an energy source, the fossil fuel that burns the dirtiest and releases the most greenhouse gases per unit.

While governments and private organizations continue to advance carbon capture, renewable, and energy storage technology efficiency, the individual could aid these efforts by changing our behavior. There are many impactful things we can do to reduce our carbon footprint, like adjusting our thermostat a few degrees, eating less red meat, driving cars less often, and purchasing fewer single-use plastics to name a few.

If we want to see real change, we need action by all parties. The complex system of generation, transmission, and consumption all need to experience radical change, or the vicious cycle will only continue.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article originally ran on EnergyCapital.

Houston startup Sage Geosystems has tapped a utility provider for an energy storage facility in the San Antonio metro area. Photo via Getty Images

Houston energy startup selects Texas location for first storage facility

headed west

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston maritime startup raises $43M to electrify vessels, opens new HQ

Maritime Mission

A Houston-based maritime technology company that is working to reduce emissions in the cargo and shipping industry has raised VC funding and opened a new Houston headquarters.

Fleetzero announced that it closed a $43 million Series A financing round this month led by Obvious Ventures with participation from Maersk Growth, Breakthrough Energy Ventures, 8090 Industries, Y Combinator, Shorewind, Benson Capital and others. The funding will go toward expanding manufacturing of its Leviathan hybrid and electric marine propulsion system, according to a news release.

The technology is optimized for high-energy and zero-emission operation of large vessels. It uses EV technology but is built for maritime environments and can be used on new or existing ships with hybrid or all-electric functions, according to Fleetzero's website. The propulsion system was retrofitted and tested on Fleetzero’s test ship, the Pacific Joule, and has been deployed globally on commercial vessels.

Fleetzero is also developing unmanned cargo vessel technology.

"Fleetzero is making robotic ships a reality today. The team is moving us from dirty, dangerous, and expensive to clean, safe, and cost-effective. It's like watching the future today," Andrew Beebe, managing director at Obvious Ventures, said in the news release. "We backed the team because they are mariners and engineers, know the industry deeply, and are scaling with real ships and customers, not just renderings."

Fleetzero also announced that it has opened a new manufacturing and research and development facility, which will serve as the company's new headquarters. The facility features a marine robotics and autonomy lab, a marine propulsion R&D center and a production line with a capacity of 300 megawatt-hours per year. The company reports that it plans to increase production to three gigawatt-hours per year over the next five years.

"Houston has the people who know how to build and operate big hardware–ships, rigs, refineries and power systems," Mike Carter, co-founder and COO of Fleetzero, added in the release. "We're pairing that industrial DNA with modern batteries, autonomy, and software to bring back shipbuilding to the U.S."

---

This article originally appeared on EnergyCapitalHTX.com.

Innovative Houston-area hardtech startup closes $5M seed round

fresh funding

Conroe-based hardtech startup FluxWorks has closed a $5 million seed round.

The funding was led by Austin-based Scout Ventures, which invests in early-stage startups working to solve national security challenges.

Michigan Capital Network also contributed to the round from its MCN Venture Fund V. The fund is one of 18 selected by the Department of Defense and Small Business Administration to participate in the Small Business Investment Company Critical Technologies Initiative, which will invest $4 billion into over 1,700 portfolio companies.

FluxWorks reports that it will use the funding to drive the commercialization of its flagship Celestial Gear technology.

"At Scout, we invest in 'frontier tech' that is essential to national interest. FluxWorks is doing exactly that by solving critical hardware bottlenecks with its flagship Celestial Gear technology ... This is about more than just gears; it’s about strengthening our industrial infrastructure," Scout Ventures shared in a LinkedIn post.

Fluxworks specializes in making contactless magnetic gears for use in extreme conditions, which can enhance in-space manufacturing. Its contactless design leads to less wear, debris and maintenance. Its technology is particularly suited for space applications because it does not require lubricants, which can be difficult to control at harsh temperatures and in microgravity.

The company received a grant from the Texas Space Commission last year and was one of two startups to receive the Technology in Space Prize, funded by Boeing and the Center for the Advancement of Science in Space (CASIS), in 2024. It also landed $1.2 million through the National Science Foundation's SBIR Phase II grant this fall.

Fluxworks was founded in College Station by CEO Bryton Praslicka in 2021. Praslicka moved the company to Conroe 2024.