How do people make sense of the epiphanies when they experience them? Pexels

It might be just the right word from your boss. It might be a phone call with a trusted friend. Or it might be waking up one morning and just knowing. There's no way to predict what will spark an epiphany that changes the way you see the world. But their power can be so far-reaching, they often leave us wondering where on earth that brilliant idea came from — and how we can find more.

Studying the mental processes behind epiphanies is especially hard because these flashes of insight are usually linked with unconscious mental processing and incubation, often during time periods when one may not seem to be thinking about a problem at all. In this way, epiphanies seem to arrive effortlessly.

So how do people make sense of the epiphanies when they experience them? In a set of unprecedented studies, Rice Business professor Erik Dane set out to find answers, first examining people who'd experienced general epiphanies, then analyzing a set of accounts of work- and career-related epiphanies themselves.

The research

In his first study, Dane surveyed more than 500 randomly selected people to ask them about their experiences with epiphanies, which he defined as a sudden and abrupt insight and/or change in perspective that transforms the individual.

Subjects who said they'd experienced epiphanies reported what they'd been doing beforehand, the feelings and insight associated with the epiphany and how they thought they'd changed afterward. Interestingly, though this survey wasn't limited to career- or work-related epiphanies, 20 percent of the responses related directly to these topics.

In the second study, Dane interviewed 22 professionals, asking them about distinct work- or career-related epiphanies, most of which resolved a nagging problem. After analyzing the transcripts of these interviews, Dane developed a set of theoretical categories describing the varieties of reactions an epiphany might spark.

People generally perceive and analyze their epiphanies in similar ways, Dane found. He categorized these into four dimensions: a person's emotional reaction to the experience of the epiphany, the question of how the epiphany arose, the circumstances that preceded the insight and a person's observations about how ready they were to experience change through an epiphany.

The findings

The typical first reaction to an epiphany, Dane says, is a sudden and emotionally charged release from a problem or tension. We've all been there: a stressful work situation that seems to offer no way out, followed by a dazzling solution that appears from the clouds. It's that suddenness that leads to the second typical reaction: a sense of astonishment due to the nonconscious nature of the insight's arrival. Feeling dumbfounded for a prolonged time isn't useful, though, so we usually start examining the factors surrounding the epiphany, including our own readiness to change.

What does this imply for workplace? After all, not every problem can or even ought to be solved by epiphany. At the same time, Dane notes, epiphanies can provide critical impetus to move forward.

Interestingly, his findings hint that one can increase the chances of having an epiphany. Though further research is required, Dane concludes that epiphanies most commonly arrive when people are open to the prospect of experiencing a major change. When something is mentally constraining us, on the other hand, eureka moments keep their distance.

The conclusion

As a worker, Dane suggests, you can open space for epiphanies by being actively aware of your surroundings. Look closely at your workplace, your constellation of coworkers and your place within the system. Perceived mindfully, these details may set the stage for problem-solving in a less focused moment.

If you're a mentor or a supervisor hoping to spark epiphanies in your work team, try applying this principle at work: Rather than laying out specific targets and attacking them head-on, aim for an environment that allows for mindful engagement, one that includes the problems that feature in your long-term goals and resonate with your workers' concerns and interests. Cultivating this environment and granting workers time and space to wander through it may lead, like a divining rod, to fresh sources of wisdom.

------

This article originally appeared on Rice Business Wisdom.

Erik Dane is a distinguished associate professor of management (organizational behavior) at Jones Graduate School of Business at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”