The HyVelocity Hub, representing the Gulf Coast region, will receive $1.2 billion to strengthen and further build out the region's hydrogen production. Photo via Getty Images

A Houston-area project got the green light as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

President Joe Biden and Energy Secretary Jennifer Granholm named the seven regions to receive funding in a White House statement today. The Gulf Coast's project, HyVelocity Hydrogen Hub, will receive up to $1.2 billion — the most any hub will receive, per the release.

“As I’ve stated repeatedly over the past years, we are uniquely positioned to lead a transformational clean hydrogen hub that will deliver economic growth and good jobs, including in historically underserved communities," Houston Mayor Sylvester Turner says in a news release. "HyVelocity will also help scale up national and world clean hydrogen economies, resulting in significant decarbonization gains. I’d also like to thank all the partners who came together to create HyVelocity Hub in a true spirit of public-private collaboration.”

Backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure, the HyVelocity Hydrogen Hub will connect more than 1,000 miles of hydrogen pipelines, 48 hydrogen production facilities, and dozens of hydrogen end-use applications across Texas and Southwest Louisiana. The hub is planning for large-scale hydrogen production through both natural gas with carbon capture and renewables-powered electrolysis.

The project is spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

“Prioritizing strong community engagement and demonstrating an innovation ecosystem, the HyVelocity Hub will improve local air quality and create equitable access to clean, reliable, affordable energy for communities across the Gulf Coast region,” says Paula A. Gant, president and CEO of GTI Energy, in a news release.

According to the White House's announcement, the hub will create 45,000 direct jobs — 35,000 in construction jobs and 10,000 permanent jobs. The other selected hubs — and the impact they are expected to have, include:

  • Tied with HyVelocity in terms of funding amount, the California Hydrogen Hub — Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) — will also receive up to $1.2 billion to create 220,000 direct jobs—130,000 in construction jobs and 90,000 permanent jobs. The project is expected to target decarbonizing public transportation, heavy duty trucking, and port operations.
  • The Midwest Alliance for Clean Hydrogen (MachH2), spanning Illinois, Indiana, and Michigan, will receive up to $1 billion. This region's efforts will be directed at optimizing hydrogen use in steel and glass production, power generation, refining, heavy-duty transportation, and sustainable aviation fuel. It's expected to create 13,600 direct jobs—12,100 in construction jobs and 1,500 permanent jobs.
  • Receiving up to $1 billion and targeting Washington, Oregon, and Montana, the Pacific Northwest Hydrogen Hub — named PNW H2— will produce clean hydrogen from renewable sources and will create over 10,000 direct jobs—8,050 in construction jobs and 350 permanent jobs.
  • The Appalachian Regional Clean Hydrogen Hub (ARCH2), which will be located in West Virginia, Ohio, and Pennsylvania, will tap into existing infrastructure to use low-cost natural gas to produce low-cost clean hydrogen and permanently and safely store the associated carbon emissions. The project, which will receive up to $925 million, will create 21,000 direct jobs—including more than 18,000 in construction and more than 3,000 permanent jobs.
  • Spanning Minnesota, North Dakota, and South Dakota, the Heartland Hydrogen Hub will receive up to $925 million and create around 3,880 direct jobs–3,067 in construction jobs and 703 permanent jobs — to decarbonize the agricultural sector’s production of fertilizer, decrease the regional cost of clean hydrogen, and advance hydrogen use in electric generation and for cold climate space heating.
  • Lastly, the Mid-Atlantic Clean Hydrogen Hub (MACH2), which will include Pennsylvania, Delaware, and New Jersey, hopes to repurposing historic oil infrastructure to develop renewable hydrogen production facilities from renewable and nuclear electricity. The hub, which will receive up to $750 million, anticipates creating 20,800 direct jobs—14,400 in construction jobs and 6,400 permanent jobs.

These seven clean hydrogen hubs are expected to catalyze more than $40 billion in private investment, per the White house, and bring the total public and private investment in hydrogen hubs to nearly $50 billion. Collectively, they aim to produce more than three million metric tons of clean hydrogen annually — which reaches nearly one third of the 2030 U.S. clean hydrogen production goal. Additionally, the hubs will eliminate 25 million metric tons of carbon dioxide emissions from end uses each year. That's roughly equivalent to annual emissions of over 5.5 million gasoline-powered cars.

“Unlocking the full potential of hydrogen—a versatile fuel that can be made from almost any energy resource in virtually every part of the country—is crucial to achieving President Biden’s goal of American industry powered by American clean energy, ensuring less volatility and more affordable clean energy options for American families and businesses,” U.S. Secretary of Energy Jennifer M. Granholm says in the release. “With this historic investment, the Biden-Harris Administration is laying the foundation for a new, American-led industry that will propel the global clean energy transition while creating high quality jobs and delivering healthier communities in every pocket of the nation.”

HyVelocity has been a vision amongst Houston energy leaders for over a year, announcing its bid for regional hydrogen hub funding last November. Another Houston-based clean energy project was recently named a semi-finalist for National Science Foundation funding.

“We are excited to get to work making HyVelocity come to life,” Brett Perlman, president and CEO of Center for Houston’s Future, says in the release. “We look forward to spurring economic growth and development, creating jobs, and reducing emissions in ways that will benefit local communities and the Gulf Coast region as a whole. HyVelocity will be a model for creating a clean hydrogen ecosystem in an inclusive and equitable manner.”

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.