According to Houston-based ENGlobal, the company "has more promising opportunities for significant new business than at any time in [the] company's history." Photo via Getty Images

For Houston-based ENGlobal Corp., a provider of engineering and automation services geared toward the energy industry, renewable fuel facilities are a business pipeline gushing with opportunity.

ENGlobal's potential contracts for renewable fuels projects currently exceed $320 million, says Bill Coskey, the company's founder, president, and CEO. That's about six times the amount of ENGlobal's revenue through the first nine months of this year — $52.9 million.

During the company's third-quarter earnings call November 5, Coskey said publicly traded ENGlobal "has more promising opportunities for significant new business than at any time in our company's history."

Many of those opportunities stem from ENGlobal's shift a couple of years ago to a sharp focus on the renewable energy sector. This includes building utility-scale systems to store wind and solar power, and supplying modular engineered process plants for forms of energy like hydrogen and renewable diesel. Modular process plants consist of separately engineered and automated modules that are made off-site and assembled on-site.

"Manufacturing plants based on modular equipment are emerging as a viable and beneficial alternative to conventional stick-built processing plants. Modular equipment offers several benefits, including flexibility in plant siting, fewer safety concerns during construction, and ease of equipment modification," according to the American Institute of Chemical Engineers.

ENGlobal is engineering and fabricating a modular hydrogen plant for a renewal diesel facility scheduled for completion in May. Incorporating proprietary technology from Denmark-based Haldor Topsoe (which has two offices and one plant in the Houston area), this hydrogen plant will consume about 20 percent less feed and fuel than conventional hydrogen plants, leading to lower operating costs and a smaller carbon footprint. It's the first facility of its kind in the U.S. This $25 million project falls into a bucket of modular process plants — valued at $10 million to $200 million each — that ENGlobal typically pursues.

ENGlobal's emphasis on renewable energy is paying off, especially now. That's because this sector is less susceptible to economic harm caused by the coronavirus pandemic and to the downturn in the oil and gas industry, according to Coskey.

"To the contrary, the green and renewable energy sector is driven by a different set of project economics — the majority of which play directly to our core strengths and capabilities," Coskey said during the November 5 earnings call.

ENGlobal comprises two business units that are capitalizing on those core strengths and capabilities:

  • Engineering, procurement, and construction management
  • Automation

Through September 26, the automation segment of the business accounted for 63 percent of the company's revenue this year, with engineering, procurement, and construction at 37 percent. In the third quarter, the balance was roughly 50-50.

For the nine-month period ended September 26, ENGlobal posted a 33 percent increase in revenue compared with the same period a year earlier. Revenue for the period rose 37 percent in the automation segment of the business and 27 percent in the engineering, procurement, and construction management segment.

Looking ahead, Coskey says plants like the one employing the Haldor Topsoe technology are "a big area of growth for us."

"We've built a business which is really vertically integrated. We can engineer and design, we can mechanically fabricate the processing modules, we can automate them, we can go onto the site and start them up. So we have full-service capabilities," Coskey says in an interview.

Those capabilities are helping ENGlobal, which Coskey started in 1985, capitalize on what he dubs the "energy revolution" in the U.S.

"Oil and gas has a long runway and is sometimes not given enough credit," he says. "But I can tell you that the capital spending for traditional oil and gas projects pretty much dried up during the course of this year. And we had to look for other sources of work for our people, so we were fortunate to have these renewable energy projects to work on."

Evercore ESI predicts capital spending on energy exploration and production in the U.S. will fall 43 percent this year compared with 2019. Meanwhile, S&P Global Market Intelligence forecasts $14.26 billion in capital spending this year on renewable energy by major U.S. utilities, up more than 20 percent from an earlier projection for 2020. The share of U.S. electricity generation from renewable energy is expected to increase from 18 percent in 2019 to 20 percent this year and 21 percent in 2021, the U.S. Energy Information Administration says.

"There's a lot of money that used to flow into oil and gas projects that now seems to be flowing into renewable energy projects," Coskey says. "We were lucky to identify that early and be positioned to capture some of that."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)