Contact-free market shopping has come to campus at UH. Photo courtesy of UH

A convenience store on campus at the University of Houston just got a little more, well, convenient — and a whole lot safer.

UH and its dining services partner, Chartwells Higher Education, have partnered with tech company Standard to upgrade the check-out process of convenience shopping. The technology is easy to install and can retrofit any convenience store to a contact-less process.

"Students' tastes change constantly, and we're well equipped to handle that. But their shopping preferences evolve too, and we want to continue providing new and unique shopping experiences that are unexpected on a college campus," says David Riddle, vice president of operations for Chartwells Higher Ed, and district manager for UH System Dining, in a press release. "This is the future of shopping, and with autonomous checkout through Standard, we've made it as easy, safe and convenient as possible for students to come in, get what they need, and go."

The store, called Market Next, is located at UH's Technology Bridge and opened earlier this month. Enabled by cameras and easy-to-use scanners, the store operates 24 hours a day and is also designed for quick service for students on the go. The fastest shopping trip recorded by Standard is 2.3 seconds.

"Market Next is the first retail store in the world to be retrofitted for a 100 percent cashierless, checkout-free experience," says Jordan Fisher, co-founder and CEO of Standard, in the release. "Our platform is the only system on the market proven to retrofit an entire retail experience. Innovative retailers like Chartwells use the AI-powered Standard platform to enable shoppers to grab any product they want and simply walk out, without waiting in line. We are excited to partner with Chartwells to deliver this groundbreaking technology to more locations around the country."

Chartwells is working with Standard to bring more of these stores across the country — as well as more itterations on the UH campus.

"Checkout-free technology is an innovation that will make our students' lives a little easier and a lot safer. This is the new standard for campus safety that is important to students today and for the foreseeable future," says Emily Messa, associate vice chancellor and associate vice president for administration at UH, in the release. "That's why we will plan to convert additional Market stores on campus to this technology in the coming year."

The University of Houston campus has 30 new members — self-driving, food-delivering robots. Photo courtesy of UH

University of Houston rolls out food delivery robots

on the move

For a small delivery fee of $1.99, students, faculty, and staff across the University of Houston campus can now get their lunch delivered by self-driving robots.

Thirty of San Francisco-based Starship Technologies' autonomous delivery robots now roam the campus thanks to a partnership with New York-based Chartwells Higher Education. The Houston campus is the first to roll out robotic food deliveries.

"This revolutionary delivery method will make it more convenient for the campus community to take advantage of our diverse dining program from anywhere on campus while expanding the hours of operation," says Emily Messa, associate vice president for administration, in a news release. "By opening our campus to this innovative service, which is paid for by the customers, the university didn't have to spend any money purchasing the technology, yet we're enhancing our food delivery capabilities."

Through the Starship Deliveries app, which is available on iOS and Android, users can select from 11 dining institutions and then identify where they are on campus. The platform allows the user to track the progress, and the device can hold up to 20 lbs of food and has the space for about three shopping bags of groceries.

"This increases our capacity to reach more customers, and I expect the robots will quickly become part of campus life," says David Riddle, Chartwells resident district manager, in a news release. (Chartwells manages UH Dining). "Robot delivery will also grow opportunities for UH Dining employees by increasing service hours and growing sales. It has also created additional jobs for students dedicated specifically to servicing the autonomous robots. It's an important advancement for foodservice at UH."

Using machine learning, artificial intelligence and sensors, the company's robots have driven over 350,000 miles and completed over 150,000 deliveries. The Starship robots "can cross streets, climb curbs, travel at night and operate in both rain and snow," per the release.

"Robotic delivery is affordable, convenient and environmentally friendly," says Ryan Tuohy, senior vice president of business development for Starship, in the release. "We're excited to start offering students, staff and faculty at Houston delivery within minutes when they need it most."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.