Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of Tierra Climate. Photos courtesy

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting."

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change."

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale."

— Cindy Taff, CEO of SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

------

This article originally ran on EnergyCapital.

Over 500 people attended the 21st annual Energy Tech Venture Forum hosted by the Rice Alliance. Photo courtesy of Rice

10 most-promising energy tech startups named at annual Houston event

top companies

Investors from around the world again identified the most-promising energy tech startups at the Rice Alliance for Technology and Entrepreneurship's annual event.

"The recognition that Houston is the epicenter of energy transition is growing. It's something we are championing as much as possible so that the world can know exactly what we're doing," Paul Cherukuri, chief innovation officer at Rice University says at the 21st annual Energy Tech Venture Forum.

The event took place during the inaugural Houston Energy and Climate Startup Week, and nearly 100 startups from 23 states and seven countries pitched investors Wednesday, September 11, and Thursday, September 12. At the conclusion of the event, the investors decided on 10 companies deemed "most promising" from the presentations.

This year's selected companies are:

  • Revterra, a Houston-based company innovating within kinetic battery technology to enable faster and cleaner electric vehicle charging.
  • From Austin, 360 Mining is a modular data center provider for the oil and gas producers.
  • New York company Andium is a centralized and optimized operations platform for large energy companies.
  • Elementium Materials, a local Katy-based company, created its battery technology that originated out of MIT.
  • Splight is a San Mateo, California-based technology platform that provides real-time operational data based on inverter-based resources assets.
  • Los Angeles-based Mitico, one of the Rice Alliance Clean Energy Accelerator's class 4 participants, provides services and equipment for carbon capture through its granulated metal carbonate sorption technology.
  • From Cambridge, Massachusetts, Osmoses is changing the way molecular gas separations are performed within the chemical, petrochemical, and energy industries.
  • Rice Alliance Clean Energy Accelerator class 4 participant CORROLYTICS, based in Houston, has a corrosion detection and monitoring technology. The company also won over the crowd and secured the People's Choice win too.
  • Ardent, based in New Castle, Delaware, has developed a membrane technology for point-source carbon capture.
  • New Haven, Connecticut-based Oxylus Energy produces an alternative fuel from converting CO2 into green methanol.

Last year, investors named its selection of most-promising companies at Rice.

"We have a responsibility as a city to lead energy transition," Cherukuri continues. "A lot of the investments we're making at Rice are going to change the world."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston nonprofit news outlet will shut down after only 2 years

In the News

Amid financial challenges, the nonprofit Houston Landing online news outlet plans to shut down by mid-May.

In an April 15 announcement posted on its website, Houston Landing says that although it launched in 2023 with more than $20 million in seed funding, the outlet failed to attract enough revenue to continue operating. The announcement followed a vote by the organization’s board of directors to close the nonprofit newsroom. All 43 employees will be laid off, the Columbia Journalism Reviewreports.

“We are proud of the Landing’s coverage of Greater Houston and continue to believe deeply in the need for more free, independent journalism in our region,” Ann B. Stern, board chair of Houston Landing as well as president and CEO of the Houston Endowment, says in the announcement. “This decision was difficult but necessary. Houston Landing’s reporting has made a meaningful impact in the community, but it struggled to find its long-term financial footing.”

According to the announcement, the Landing’s board is exploring a partnership with the Austin-based Texas Tribune, a pioneer in nonprofit journalism, to potentially establish a local news initiative in Houston. Later this year, the Texas Tribune plans to open a locally focused newsroom in Waco. A similar newsroom is in the works in Austin.

“We have great respect for Houston Landing’s work in delivering high-quality, nonpartisan journalism to its readers,” says Sonal Shah, CEO of the Texas Tribune. “We also understand the profound challenges facing local newsrooms today — journalism is a public service and needs a strong ecosystem to thrive. We look forward to exploring how we can learn from what the Landing started and create a sustainable model that serves the Houston community. We will take time to explore the right path forward to ensure sustainability.”

Houston Landing was launched after a two-year study led by the American Journalism Project found many Houstonians were disappointed about a lack of trustworthy, deeply reported local news. Financial backers of the Landing include the American Journalism Project, the Houston Endowment, Arnold Ventures, the Kinder Foundation, and the John S. and James L. Knight Foundation.

Despite the high-profile support, the site struggled to find an audience. CJR notes that the Landing had approximately 13,000 newsletter subscribers and only generated about $80,000 in subscription revenue. In the article, executive editor Sewell Chan identifies a number of other issues, including a lack of editorial focus and changes in leadership. “But in the end, the gap between board and staff, between management and labor, and between runway and revenue was just too large to bridge,” he writes.

“While it’s with a heavy heart that we announce the closure of our newsroom, I want to express my deepest gratitude to the dedicated journalists and staff members who poured their passion into our mission every single day,” Houston Landing CEO Peter Bhatia says.

“Houston Landing demonstrates how a commitment to truth and accountability can transform communities and improve lives,” he adds. “I’m thankful to those who believed in us, supported us, and stood with us as we connected with each other through stories that inspired positive change.”

---

This article originally appeared on our sister site, CultureMap.com.

Houston space tech company develops new engine features with NASA funding

testing 1, 2, 3

Outfitted with a new type of aerospace technology, a rocket engine developed by Houston startup Venus Aerospace for hypersonic flights will undergo testing this summer.

Supported by a $155,908 federal Small Business Innovation Research (SBIR) grant from NASA, Venus Aerospace came up with a new design for nozzles — engine parts that help manage power — for its compact rocket engine. Venus Aerospace says the newly configured nozzles have “exceeded expectations” and will be incorporated into Venus’ upcoming ground-based engine testing.

“We’ve already proven our engine outperforms traditional systems on both efficiency and size,” Venus Aerospace CEO Sassie Duggleby says. “The technology we developed with NASA’s support will now be part of our integrated engine platform — bringing us one step closer to proving that efficient, compact, and affordable hypersonic flight can be scaled.”

The engine at the heart of Venus’ flight platform is called a rotating detonation rocket engine (RDRE). Venus says it’s the first U.S. company to make a scalable, affordable, flight-ready RDRE.

Unlike conventional rocket engines, Venus’ RDRE operates through supersonic shockwaves, called detonations, that generate more power with less fuel.

“This is just the beginning of what can be achieved with Venus propulsion technology,” says Andrew Duggleby, chief technology officer at Venus, founded in 2020. “We’ve built a compact high-performance system that unlocks speed, range, and agility across aerospace, defense, and many other applications. And we’re confident in its readiness for flight.”

Last fall, the company unveiled a high-speed engine system that enables takeoff, acceleration, and hypersonic cruising — all powered by a single engine. While most high-speed systems require multiple engines to operate at different speeds, Venus’ innovation does away with the cost, weight and complexity of traditional propulsion technology.

Among other applications, the Venus system supports:

  • Spacecraft landers
  • Low-earth-orbit satellites
  • Vehicles that haul space cargo
  • Hypersonic drones and missiles

Nvidia announces plans to produce AI supercomputers at new Texas plants

Manufacturing News

Nvidia announced Monday that it will produce its artificial intelligence supercomputers in the United States for the first time.

The tech giant said it has commissioned more than 1 million square feet of manufacturing space to build and test its specialized Blackwell chips in Arizona and AI supercomputers in Texas — part of an investment the company said will produce up to half a trillion dollars of AI infrastructure in the next four years.

“The engines of the world’s AI infrastructure are being built in the United States for the first time,” Nvidia founder Jensen Huang said in a statement. “Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain and boosts our resiliency.”

Nvidia’s announcement comes as the Trump administration has said that tariff exemptions on electronics like smartphones and laptops are only a temporary reprieve until officials develop a new tariff approach specific to the semiconductor industry.

White House officials, including President Donald Trump himself, spent Sunday downplaying the significance of exemptions that lessen but won’t eliminate the effect of U.S. tariffs on imports of popular consumer devices and their key components.

“They’re exempt from the reciprocal tariffs but they’re included in the semiconductor tariffs, which are coming in probably a month or two,” U.S. Commerce Secretary Howard Lutnick told ABC’s “This Week” on Sunday.

Nvidia said in a post on its website that it has started Blackwell production at Taiwan Semiconductor Manufacturing Co. chip plants in Phoenix. The Santa Clara, California-based chip company is also building supercomputer manufacturing plants in Texas — with Foxconn in Houston and Wistron in Dallas.

Nvidia's AI super computers will serve as the engines for AI factories, “a new type of data center created for the sole purpose of processing artificial intelligence,” the company said, adding that manufacturing in the U.S. will create “hundreds of thousands of jobs and drive trillions of dollars in economic security over the coming decades."

Mass production at both plants is expected to ramp up in the next 12-15 months, Nvidia said. The company also plans on partnering with Taiwan-based company SPIL and Amkor for “packaging and testing operations” in Arizona.

In a statement Monday, the White House called Nvidia’s move “the Trump Effect in action.”

Trump “has made U.S.-based chips manufacturing a priority as part of his relentless pursuit of an American manufacturing renaissance, and it’s paying off — with trillions of dollars in new investments secured in the tech sector alone,” the White House said.

Earlier this year, Trump announced a joint venture investing up to $500 billion for infrastructure tied to artificial intelligence by a new partnership formed by OpenAI, Oracle and SoftBank. The new entity, Stargate, was tasked with building out data centers and the electricity generation needed for the further development of the fast-evolving AI in Texas, according to the White House.

The initial investment is expected to be $100 billion and could reach five times that sum.