Several Houston institutions scored funding from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

Armed with a $4.75 million grant from the Cancer Prevention and Research Institute of Texas, a German biotech company will relocate to Houston to work on developing a cancer medicine that fights solid tumors.

Eisbach Bio is conducting a clinical trial of its EIS-12656 therapy at Houston’s MD Anderson Cancer Center. In September, the company announced its first patient had undergone EIS-12656 treatment. EIS-12656 works by suppressing cancer-related genome reorganization generated by DNA.

The funding from the cancer institute will support the second phase of the EIS-12656 trial, focusing on homologous recombination deficiency (HRD) tumors.

“HRD occurs when a cell loses its ability to repair double-strand DNA breaks, leading to genomic alterations and instability that can contribute to cancerous tumor growth,” says the institute.

HRD is a biomarker found in most advanced stages of ovarian cancer, according to Medical News Today. DNA constantly undergoes damage and repairs. One of the repair routes is the

homologous recombination repair (HRR) system.

Genetic mutations, specifically those in the BCRA1 and BCRA1 genes, cause an estimated 10 percent of cases of ovarian cancer, says Medical News Today.

The Cancer Prevention and Research Institute of Texas (CPRIT) says the Eisbach Bio funding will bolster the company’s “transformative approach to HRD tumor therapy, positioning Texas as a hub for innovative cancer treatments while expanding clinical options for HRD patients.”

The cancer institute also handed out grants to recruit several researchers to Houston:

  • $2 million to recruit Norihiro Goto from the Massachusetts Institute of Technology to MD Anderson.
  • $2 million to recruit Xufeng Chen from New York University to MD Anderson.
  • $2 million to recruit Xiangdong Lv from MD Anderson to the University of Texas Health Science Center at Houston.

In addition, the institute awarded:

  • $9,513,569 to Houston-based Marker Therapeutics for a first-phase study to develop T cell-based immunotherapy for treatment of metastatic pancreatic cancer.
  • $2,499,990 to Lewis Foxhall of MD Anderson for a colorectal cancer screening program.
  • $1,499,997 to Abigail Zamorano of the University of Texas Health Science Center at Houston for a cervical cancer screening program.
  • $1,497,342 to Jennifer Minnix of MD Anderson for a lung cancer screening program in Northeast Texas.
  • $449,929 to Roger Zoorob of the Baylor College of Medicine for early prevention of lung cancer.

On November 20, the Cancer Prevention and Research Institute granted funding of $89 million to an array of people and organizations involved in cancer prevention and research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice Business Plan Competition names startup teams for 2026 event

ready, set, pitch

The Rice Alliance for Technology and Entrepreneurship has announced the 42 student-led teams that will compete in the 26th annual Rice Business Plan Competition this spring.

The highly competitive event, known as one of the world’s largest and richest intercollegiate student startup challenges, will take place April 9-11 on Rice's campus and at the Ion. Teams in this year's competition represent 39 universities from four countries, including one team from Rice and two from the University of Texas at Austin.

Graduate student-led teams from colleges or universities around the world will present their plans before more than 300 angel, venture capital and corporate investors to compete for more than $1 million in prizes. Top teams were awarded $2 million in investment and cash prizes at the 2025 event.

The 2026 invitees include:

  • Alchemll, University of Tennessee - Knoxville
  • Altaris MedTech, University of Arkansas
  • Armada Therapeutics, Dartmouth College
  • Arrow Analytics, Texas A&M University
  • Aura Life Science, Northwestern University
  • BeamFeed, City University of New York
  • BiliRoo, University of Michigan
  • BioLegacy, Seattle University
  • BlueHealer, Johns Hopkins University
  • BRCĒ, Michigan State University
  • ChargeBay, University of Miami
  • Cocoa Potash, Case Western Reserve
  • Cosnetix, Yale University
  • Cottage Core, Kent State University
  • Crack'd Up, University of Wisconsin - Madison
  • Curbon, Princeton University
  • DialySafe, Rice University
  • Foregger Energy Systems, Babson College
  • Forge, University of California, Berkeley
  • Grapheon, University of Pittsburgh
  • GUIDEAIR Labs, University of Washington
  • Hydrastack, University of Chicago
  • Imagine Devices, University of Texas at Austin
  • Innowind Energy Solutions, University of Waterloo (Canada)
  • JanuTech, University of Washington
  • Laetech, University of Toronto (Canada)
  • Lectra Technologies, MIT
  • Legion Platforms, Arizona State University
  • Lucy, University of Pennsylvania
  • NerView Surgical, McMaster University (Canada)
  • Panoptica Technologies, Georgia Tech University
  • PowerHouse, MIT
  • Quantum Power Systems, University of Texas at Austin
  • Routora, University of Notre Dame
  • Sentivity.ai, Virginia Tech
  • Shinra Energy, Harvard University
  • Solid Air Dynamics, RWTH Aachen (Germany)
  • Spine Biotics, University of North Carolina - Chapel Hill
  • The Good Company, Michigan Tech
  • UNCHAIN, Lehigh University
  • VivoFlux, University of Rochester
  • Vocadian, University of Oxford (UK)

This year's group joins more than 910 RBPC alums that have raised more than $6.9 billion in capital, according to Rice.

The University of Michigan's Intero Biosystems, which is developing the first stem cell-driven human “mini gut,” took home the largest investment sum of $902,000 last year. The company also claimed the first-place prize.

Houston suburb ranks as No. 3 best place to retire in Texas

Rankings & Reports

Texas retirees on the hunt for the right place to settle down and enjoy their blissful retirement years will find their haven in the Houston suburb of Pasadena, which just ranked as the third-best city to retire statewide.

A new study conducted by the research team at RetirementLiving.com, "The Best Cities to Retire in Texas," compared the affordability, safety, livability, and healthcare access for seniors across 31 Texas cities with at least 90,000 residents.

Wichita Falls, about 140 miles northwest of Dallas, claimed the top spot as the No. 1 best place to retire in Texas.

The senior living experts said Pasadena has the best healthcare access for seniors in the entire state, and it ranked as the No. 8 most affordable city on the list.

"Taking care of one’s health can be stressful for seniors," the report said. "Harris County, where [Pasadena is] located, has 281.1 primary care physicians per 1,000 seniors — that’s almost 50-fold the statewide ratio of 5.9 per 1,000."

Pasadena ranked 10th overall for its livability, and ranked 25th for safety, the report added.

Meanwhile, Houston proper ranked as the No. 31 best place to retire in Texas, but its livability score was the 7th best statewide.

Seven of the Lone Star State's top 10 best retirement locales are located in the Dallas-Fort Worth Metroplex: Carrollton (No. 2), Plano (No. 4), Garland (No. 5), Richardson (No. 6), Arlington (No. 7), Grand Prairie (No. 8), and Irving (No. 9). McAllen, a South Texas border town, rounded out the top 10.

RetirementLiving said Carrollton has one of the lowest property and violent crime rates per capita in Texas, and it ranked as the No. 5 safest city on the list. About 17 percent of the city's population is aged 65 or older, which is higher than the statewide average of just 14 percent.

The top 10 best place to retire in Texas in 2026 are:

  • No. 1 – Wichita Falls
  • No. 2 – Carrollton
  • No. 3 – Pasadena
  • No. 4 – Plano
  • No. 5 – Garland
  • No. 6 – Richardson
  • No. 7 – Arlington
  • No. 8 – Grand Prairie
  • No. 9 – Irving
  • No. 10 – McAllen
---

This article originally appeared on CultureMap.com.

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.