This week's roundup of Houston innovators includes Anwar Sadek of Corrolytics, Angela Holmes of OmniScience, and Eduardo Fonseca of EndoQuest Robotics. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes three innovators across health care and energy.

Anwar Sadek, founder and CEO of Corrolytics

Anwar Sadek of Corrolytics joins the Houston Innovators Podcast to discuss his company's growth and move to Houston. Photo courtesy

Despite having success in taking his technology from lab to commercialization, Anwar Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year." Continue reading.

Angela Holmes, CEO of OmniScience

Angela Holmes is the CEO of OmniScience. Photo via omniscience.com

Houston data science firm OmniScience announced this month that it has partnered with Florida-based INmune Bio (NASDAQ: INMB) on a global Phase 2 Alzheimer’s disease clinical trial.

The trial, known as ADO2, will utilize OmniScience's recently developed product, Vivo, which uses generative AI to centralize and analyze clinical trial data in real time, according to a release. The two companies also partnered during Vivo’s development and recent roll-out.

"OmniScience and INmune Bio share a vision to transform how clinical trial teams engage with data – transforming data into knowledge in real time and informing decisions that increase the probability of success,” Angela Holmes, CEO of OmniScience, says in a statement. “As our partnership moves forward, we’re gaining further insights from the INmune team that we can integrate into Vivo’s roadmap. We look forward to our continued mutual success.” Continue reading.

Eduardo Fonseca, interim CEO of EndoQuest Robotics

EndoQuest Robotics secured an Investigational Device Exemption from the FDA for its clinical study. Photo via LinkedIn

A Houston surgical robotics company has gotten a Investigational Device Exemption from the FDA to go forward with human trials.

This news allows EndoQuest Robotics to begin its Prospective Assessment of a Robotic-Assisted Device in Gastrointestinal Medicine (PARADIGM) study, which will be conducted at leading United States health care facilities, including Brigham and Women’s Hospital (Boston), Mayo Clinic (Scottsdale), Cleveland Clinic (Cleveland), AdventHealth (Orlando), and HCA Healthcare (Houston). The study will include surgeries on 50 subjects, who will hopefully begin to enroll in January.

“The foundational thesis is we're trying to make sure that the world's largest medical center is also the world's largest med tech innovation center,” Eduardo Fonseca, interim CEO of EndoQuest Robotics, tells InnovationMap. Continue reading.

EndoQuest Robotics secured an Investigational Device Exemption from the FDA for its clinical study. Photo via Getty Images

FDA greenlights Houston surgery robotics company's unique technology

headed to clinical trials

A Houston surgical robotics company has gotten a Investigational Device Exemption from the FDA to go forward with human trials.

This news allows EndoQuest Robotics to begin its Prospective Assessment of a Robotic-Assisted Device in Gastrointestinal Medicine (PARADIGM) study, which will be conducted at leading United States health care facilities, including Brigham and Women’s Hospital (Boston), Mayo Clinic (Scottsdale), Cleveland Clinic (Cleveland), AdventHealth (Orlando), and HCA Healthcare (Houston). The study will include surgeries on 50 subjects, who will hopefully begin to enroll in January.

“The foundational thesis is we're trying to make sure that the world's largest medical center is also the world's largest med tech innovation center,” Eduardo Fonseca, interim CEO of EndoQuest Robotics, tells InnovationMap.

His company is well on its way to helping to assure that, through making history of its own. EndoQuest is behind the world's first Flexible Robotic Surgical System, a technology that may one day transform surgery as we know it.

The idea to use these novel robots for surgery came from Dr. Todd Wilson, a surgeon at UTHealth Houston, who spent his medical education, residency, and fellowship at the institution.

“I had really focused in my practice on trying to do everything possible to improve outcomes for patients,” Wilson explains. “And there seemed to be a pretty good correlation that the smaller the incisions or the fewer incisions, the better patients would do.”

The stumbling block? The necessary small incisions are difficult for human surgeons to make with current technology. But UTHealth was part of the solution.

“Right there in the University of Texas was a microsurgical lab where they were focusing on trying to develop robotics, but the application was still a little bit fuzzy,” Wilson says.

Using their innovations to solve Wilson’s problem turned out to be the start of the company now known as EndoQuest Robotics.

The first indication for the system is for colon lesions. But in the future it could be used for practically any minimally invasive surgery (MIS). That means that the robots could help to perform anything from a tonsillectomy to cholecystectomy (gallbladder removal) to non-invasive colorectal procedures, should those lesions prove to be cancerous.

According to Fonseca, last year was the first on record that there were more MIS, including laparoscopic and robotic surgeries, than conventional ones in the U.S. The time is right to forge ahead with the flexible robotic surgical system. Days ago, the EndoQuest team announced that its Investigational Device Exemption (IDE) application for its pivotal colorectal clinical study was approved by the FDA.

“Our end point is a device that can be mass-manufactured and very safe for patients and has a short learning curve, so therefore, we intend to learn a lot during these trials that will inform our ultimate design,” says Fonseca.

He adds that it’s a “brilliant” group of engineers that has set EndQuest apart, including both teams in Houston and in South Korea.

“We can move twice as fast as anyone else,” jokes engineer Jiwon Choi.

Despite the extra brain power provided by the South Korea engineers, Fonseca says that EndoQuest’s beginnings are “as much of a Houston story as you could find.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.