The University of Houston's Navin Varadarajan explains that while COVID vaccines prevent advanced disease, they don’t prevent transmission. But he has a solution. Photo via Getty Images

Since the force of COVID-19 hit globally in 2020, scientists have made efficient progress in the fight against it. As Dr. Navin Varadarajan puts it, vaccines have “allowed us to become a society again.”

And he should know, the M.D. Anderson Professor of William A. Brookshire Chemical and Biomolecular Engineering at University of Houston just published back-to-back studies for nasal sprays that combat viruses. One, the NanoSTING therapeutic, has proven effective in treating strains of SARS-CoV-2 and the flu virus. The other, NanoSTING-NS Pan-coronavirus Vaccine is targeted at preventing the transmission of multiple COVID variants altogether.

Why a nasal vaccine? Varadarajan explains that while COVID vaccines prevent advanced disease, they don’t prevent transmission.

“Intramuscular vaccines do not facilitate a component of peer immunity called mucosal immunity, which takes care of these points of entries, these wet surfaces, which can be of the nose and the wet surfaces of the nose, and so they don't prevent transmission,” he tells InnovationMap. “So I can be vaccinated, I pick up a small infection that's confined largely to my nostrils, and I can still pass it on to vulnerable people, the aged, the immunocompromised people who have all the drugs they're taking to fight other things, like cancer patients. And so for them, the vaccines tend to be less efficacious, and if I transfer it to them, unfortunately they can end up in a hospital, right? And so preventing transmission is the way to end this cycle.”

Dr. Navin Varadarajan is the M.D. Anderson Professor of William A. Brookshire Chemical and Biomolecular Engineering at University of Houston. Photo via UH.edu

The NanoSTING-NS is also notable for its potential ability to end what Varadarajan calls “the endless cycle of boosting.” The way to do that, he explains, is to prevent the infection at its root. And theoretically, his lab’s invention could do that. But he cautions readers not to get too excited just yet.

The vaccine is currently in the phase of animal testing, though Varadarajan is hopeful that it could move to human samples in about a year.

The therapeutic can treat multiple respiratory viruses by using fat droplets to deliver the immune booster cGAMP.

“The ability to activate the innate immune system presents an attractive route to armoring humans against multiple respiratory viruses, viral variants and also minimizing transmission to vulnerable people,” says postdoctoral associate Ankita Leekha, first author on the paper that shares NanoSTING’s findings. “The advantage of NanoSTING is that only one dose is required, unlike the antivirals like Tamiflu that require 10 doses.”

Ankita Leekha is the first author on the paper that shares NanoSTING’s findings. Photo via UH.edu

Varadarajan puts it even more simply: “Just like we have Tylenol, just like you take aspirin, you feel like you have some symptoms, and you take it afterwards.”

Currently, he says that the partners with whom the lab is working towards commercialization are prioritizing the therapeutic over the vaccine. The reasons are clear. Varadarajan explains that, while we’ve now long had antibiotics to broadly combat infections, there hasn’t been anything like that to battle viruses. With its ability to target multiple viruses, NanoSTING could be that innovation.

“We activate the innate immune system. So our drug is not virus-specific. Our drug works by activating your own immune system, and that will then fight off different kinds of viruses,” he says.

A single product that treats everything from the common cold to COVID-19 by capitalizing on the patient’s own immune system could be closer than we realize.

The researchers hope to get the vaccine into human trials soon. Photo via UH.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.

Houston VC funding surged in Q1 2025 to highest level in years, report says

by the numbers

First-quarter funding for Houston-area startups just hit its highest level since 2022, according to the latest PitchBook-NVCA Venture Monitor. But fundraising in subsequent quarters might not be as robust thanks to ongoing economic turmoil, the report warns.

In the first quarter of 2025, Houston-area startups raised $544.2 million in venture capital from investors, PitchBook-NVCA data shows. That compares with $263.5 million in Q1 2024 and $344.5 million in Q1 2023. For the first quarter of 2022, local startups nabbed $745.5 million in venture capital.

The Houston-area total for first-quarter VC funding this year fell well short of the sum for the Austin area (more than $3.3 billion) and Dallas-Fort Worth ($696.8 million), according to PitchBook-NVCA data.

While first-quarter 2025 funding for Houston-area startups got a boost, the number of VC deals declined versus the first quarters of 2024, 2023 and 2022. The PitchBook-NVCA Monitor reported 37 local VC deals in this year’s first quarter, compared with 45 during the same period in 2024, 53 in 2023, and 57 in 2022.

The PitchBook-NVCA report indicates fundraising figures for the Houston area, the Austin area, Dallas-Fort Worth and other markets might shrink in upcoming quarters.

“Should the latest iteration of tariffs stand, we expect significant pressure on fundraising and dealmaking in the near term as investors sit on the sidelines and wait for signs of market stabilization,” the report says.

Due to new trade tariffs and policy shifts, the chances of an upcoming rebound in the VC market have likely faded, says Nizar Tarhuni, executive vice president of research and market intelligence at PitchBook.

“These impacts amplify economic uncertainty and could further disrupt the private markets by complicating investment decisions, supply chains, exit windows, and portfolio strategies,” Tarhuni says. “While this may eventually lead to new domestic investment and create opportunities, the overall environment is facing volatility, hesitation, and structural change.”