Pradeep Sharma, M.D. Anderson Chair Professor and department chair at the University of Houston, was named to the National Academy of Engineering. Photo via uh.edu

A national organization has named its latest cohort of new members — which includes Elon Musk — and five Houston-area innovators have also made the cut.

The National Academy of Engineering elected 111 new members and 22 international members, bringing the total U.S. membership to 2,388 and the number of international members to 310. The appointment is among the highest professional distinctions in an engineer's career. Each member has been found to have made significant contributions to "engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature," according to a news release.

The newly elected class will be formally inducted during the NAE's annual meeting on Oct. 2. The five Houston-area appointees and what they are being recognized for are:

  • Richard G. Baraniuk, C. Sidney Burrus Professor, Department of Electrical and Computer Engineering, Rice University. For the development and broad dissemination of open educational resources and for foundational contributions to compressive sensing.
  • Donald Nathan Meehan, president, CMG Petroleum Consulting Ltd.. For technical and business innovation in the application of horizontal well technology for oil and gas production.
  • Pradeep Sharma, M.D. Anderson Chair Professor and department chair, Department of Mechanical Engineering, University of Houston. For establishing the field of flexoelectricity, leading to the creation of novel materials and devices and insights in biophysical phenomena.
  • Leon Thomsen, chief scientist, Delta Geophysics Inc. For contributions to seismic anisotropy concepts that produced major advances in subsurface analysis.
  • David West, corporate fellow, Corporate Research and Innovation, Saudi Basic Industries Corp. For solutions to problems with technological, commercial, and societal impacts while advancing chemical sciences by applying reaction engineering fundamentals.

In a news release from UH, Sharma says it's the highest honor he could achieve as an engineer. The NAE recognized Sharma's work within flexoelectricity, a relatively understudied, exotic phenomenon that has the potential to provide similar functionality as piezoelectrics.

“Nature has provided us very few piezoelectric materials even though their applications in energy harvesting and in making sensors is very important. What we did was use theory to design materials that perform like piezoelectric ones, so that they can create electricity,” says Sharma in the release.

Sharma has worked at UH since 2004, and previously conducted research at General Electric for three years.

“The recognition of Professor Sharma by the National Academy of Engineering highlights a career full of outstanding research that has contributed to the understanding of engineering and helped uncover solutions for some of the world’s most significant problems,” says Paula Myrick Short, UH senior vice president for academic affairs and provost, in the release.

Over at Rice, Baraniuk's engineering career includes computational signal processing, most recently as it relates to machine learning. He's best known for spearheading the creation of Connexions, one of the first open-source education initiatives, and its successor, OpenStax, which publishes high-quality, peer-reviewed textbooks that are free to download.

“It’s auspicious timing that the NAE citation mentioned open education, because the seventh of February was the 10th anniversary of OpenStax publishing its first free and open textbook,” he says in a release from Rice. “It’s neat to have this happen in the same week, and worth pointing out that if ever there was a team effort, it was Connexions and OpenStax.”

Baraniuk has been at Rice since 1992, has three degrees in electrical and computer engineering.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”