This Texas company thinks canines deserve clean air, too. Courtesy photo

Leave it to an Austin company to give us what we really need during this pandemic: dog face masks. Unlike their human companions, however, these are not for use in the fight against COVID-19.

On August 27, locally owned The Good Air Team announced the release of its K9 Mask, an N95-caliber snout shield for dogs. Though they resemble muzzles, these specially designed masks filter smog, emissions, pollens, smoke from wildfires, dust, and even bacteria.

Basically, says the company, whenever a human is advised to wear a mask for environmental reasons, so should a canine. Exposure to toxic particles — particularly smoke — can cause pulmonary disease and vision problem in pups, among other issues.

Each mask is washable and outfitted with a removable four-layer air filter to help remove particles from the air as the dog breathes in. The air filter adheres to the Centers for Disease Control's requirements for an N95 mask, a hospital-grade face covering that filters 95 percent of the toxins in air.

Upon exhaling, the mask uses an "exhaust valve" to release air from the mask. The company claims the valve even releases heat to cool off a panting dog.

"Wildfires in places like California the last several years have unfortunately become the new normal. Finding solutions to the problems of air pollution, like wildfire smoke, is the number one goal of the Good Air Team," says CEO Kirby Holmes in a release.

Holmes and co-owner Evan Daugherty launched The Good Air Team in 2018. The K9 Mask project is the result of the company's successful March 2019 Kickstarter, where it surpassed its $10,000 goal to bring the line into production.

K9 Masks are available online for $59, come in small, medium, and large sizes, and are outfitted with adjustable neck and muzzle straps. Special five-packs of air filters can be purchased for an additional $24.88.

Adds Holmes: "We are empowering dog owners with new solutions to protect their pet's health."

------

This article originally ran on CultureMap.

Dr. Colleen O'Connor has adapted immunotherapy treatments to be used in dogs. Courtesy of CAVU Biotherapies

Houston-based veterinary biotech startup modernizes cancer treatments for dogs

Paw-dern medicine

More than three years after its founding, Houston-based veterinary biotech company CAVU Biotherapies recently accomplished a significant milestone. In October, CAVU's specialized immunotherapy was administered to its first cancer patient: a black Labrador in Pennsylvania diagnosed with B-cell lymphoma.

Dr. Colleen O'Connor, CEO and founder of CAVU Biotherapies, established the company in July 2015 with a goal to help pets live longer post-cancer diagnoses. O'Connor, who earned a PhD in toxicology with a specialty in immunology, has more than a decade of hands-on experience researching cancer treatments.

"Our goal is to scale up and be able to increase our dogs' qualities of life with us," O'Connor said. "We want to keep families intact longer and we want to be able to modernize cancer care for our animals."

At CAVU, O'Connor dedicates her time to modernizing cancer care for dogs by developing an Autologous Prescription Product, otherwise known as adoptive T-cell therapy for dogs. The T-cell therapy is currently offered as a companion treatment to other canine cancer treatments, such as chemotherapy, radiation or surgery, O'Connor said.

Historically, cancer research for animals has lagged behind that of humans, and cancer diagnoses have come late due to the language barrier, O'Connor said. Of the dogs who enter remission, a majority of them relapse within 10 months to one year, she said.

"A majority [of dogs] are diagnosed at stage four, and you have to become very aggressive," O'Connor said. "For B-cell lymphoma, with the current treatments right now and the current standard of [therapies], less than 20 percent make it to two years post-diagnosis."

Launching CAVU
O'Connor first began studying T-cell therapy for humans with cancer during her post-doctoral fellowship at M.D. Anderson Cancer Center. Her fellowship also partnered with Texas A&M University's Small Animal Hospital to develop a clinical trial studying the effects of adoptive T-cell therapies on dogs with B-cell lymphoma.

T-cell therapy is a cellular-based treatment in which a type of white blood cells — or the cells that fight off tumors and infections — are harvested from blood samples drawn from patients. The cells are then injected back into the patient through an IV to fight the cancerous cells, O'Connor said.

Unexpectedly, O'Connor's 19-year-old dog, Bubbles, was diagnosed with transitional cell carcinoma in 2008 and later dying from it in December 2009. Five years later, O'Connor's sister's 6-year-old dog, Daisy, also died from transitional cell carcinoma. O'Connor said she remembers feeling helpless as she watched the dogs succumb to the disease.

"I was giving them drugs and protocols that were from 1980 … and I was really upset that there wasn't much more we could do for our dogs — especially because I treat my dogs like family," O'Connor said.

That was when O'Connor realized she wanted to help prevent other people from feeling the pain of losing their furry family members. While T-cell therapy is not a new method of treating cancer in humans, O'Connor focused on modifying the serum to create a treatment plan appropriate for dogs.

However, launching a company focusing specifically on treating cancer in animals was not without its challenges; O'Connor said she had to learn how to start a business, make industry connections, and adopt an entrepreneurial mindset.

To help with this, CAVU also connected with various entrepreneurial accelerators, such as Houston Technology Center and Station Houston, which are associations that help place young businesses in front of investors.

CAVU later became a member of the Houston Angel Network — a group of private investors of high net worth individuals that as a group invest in startups. By presenting her business to HAN and its investors, CAVU was able to gain financial backing.

CAVU also recently joined the Capital Factory in early 2018, an Austin-based accelerator program for entrepreneurs in Texas. O'Connor said the program has helped her meet investors, mentors and other startups.

"The way I overcame a lot of this [the early challenges] is by education, listening and trying to navigate and talk with as many of the right people as I could that had experience," she said.

The future of CAVU
Since CAVU treated its first patient in October, CAVU's adoptive T-cell therapy treatment has been administered to six dogs, O'Connor said. CAVU's T-cell therapy is currently available at more than 12 veterinary clinics across the country, including clinics in Texas, Florida, Pennsylvania, New York, North Carolina, and Missouri.

Additionally, four Houston-area clinics currently offer the T-cell therapy treatment: Garden Oaks Veterinary Clinic, Bayou City Veterinary Hospital, Memorial-610 Hospital for Animals, and Sugar Land Veterinary Specialists.

In order for a dog to be considered as a candidate — though it is ultimately up to the veterinarian on whether the T-cell therapy is right for specific dogs — the dogs must weigh more than 8 pounds, not be allergic to mouse or cow products and have no active autoimmune diseases.

The company also launched a new clinical trial with A&M University in October, looking at the effects of CAVU's T-cell therapy coupled with reduced chemotherapy periods for dogs, from roughly 19 to 26 weeks of chemotherapy to 6 to 8 weeks.

While CAVU's therapy is currently only available for dogs, O'Connor said her team plans to modify the T-cell therapy to be administered in other animals.

"We have a lot of cat owners ask us [about treatment] and we are going to do that for the next round in funding," she said. "We're going to look at how to translate this for cats and eventually horses."

O'Connor said that CAVU will launch more clinical trials with A&M University's Small Animal Hospital in the future, with CAVU aiming to make T-cell therapy treatments for cats and horses available in 2020.

Looking back, O'Connor said she has come a long way in her career path: from working with sea animals at the Newport Aquarium in Kentucky to studying human immunology and toxicology, but she's returned to studying animals.

"It's amazing how I pivoted, but at the end of the day I kind of came back to animals … and I came back full circle in a way I could have never expected," she said.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”