Othram and the University of Texas M.D. Anderson Cancer Center have teamed up to create a modern forensic sequencing lab program. Getty Images

Houston-area's first-privately held forensic sequencing laboratory has partnered with The University of Texas M.D. Anderson Cancer Center to create an academic program that will provide forensic training to genome scientists that will help them crack previously unsolved criminal cases.

Othram was created in 2018 specifically to apply the power of modern DNA parallel sequences to forensic evidence. Its new academic program partnership is aimed at training Molecular Genetic Technology (MGT) graduate students in the newest laboratory techniques and technology for the recovery and analysis of human DNA from deteriorated or contaminated materials.

"Because this field is so new, there aren't many individuals who are experts in both genomics and forensic science," David Mittelman, CEO and founder of Othram, tells InnovationMap. "We wanted to collaborate with M.D. Anderson who has a great genetic testing program already to help students learn about how to apply current techniques that are being used to solve cases that no one else can solve."

MGT students, who study the role of genetics in medicine, will be able to train with Othram experts using new technological advances such as the ability to harness whole-genome shotgun sequencing for the unique needs that forensic evidence demands like human identification.

"The Texas Medical Center is the best in the world, specifically for genomics training so it seemed like a natural fit," says Mittelman. "Especially since we want to attract and expose students to this new area of forensics as a possible outlet."

The use of new technology is what sets Othram apart, last year they helped solved a 103-year old mystery of a headless torso found in an Idaho cave, using their Forensic-Grade Genome SequencingTM technology. The DNA extraction and sequencing lab at Othram distill the sample DNA down to a sequence, which with the help of computer software, can be analyzed to reconstruct the whole genome of an individual's DNA.

Then the DNA is digitized and matched to other databases such as the FBI's Combined DNA Index System to cross-reference for a DNA match. With Othram's ability to construct whole genomes from previously unusable DNA samples, they can further the search to identify human remains or identify suspects from living relatives.

"There is no one currently leveraging whole genome sequencing right now like Othram," says Mittelman. "There's a whole range of opportunities from taking a look at the whole genome from ancestry to relationship testing and physical trait prediction."

The unique learning experience for MGT students will integrate classroom lectures, laboratory demonstrations, and technological experiences. Mittleman says that the academic program partnership will enable a new generation of forensic genomics scientists to digitize the nation's DNA evidence and solve cold cases.

Brittany Barreto wants Pheramor to be known for its science-based dating expertise. Karla Martin/Pheramor

Houston entrepreneur positions her company as a leader in online dating

Digital romance

Brittany Barreto was years ahead of the marketplace when she had her idea for a DNA-based dating app, now called Pheramor. At the time, online dating mostly consisted of eHarmony and sending your DNA through the mail to anyone just wasn't done.

"I had the idea at 18 — almost 10 years ago — and, at that time, 23AndMe was shut down because the FDA wasn't comfortable with it," Barreto says. "But then in 2016, everyone is using dating apps and everyone is sending their spit in the mail. It was a perfect time to introduce a techy way to find love."

Even better, now Pheramor's potential users have swiping fatigue, Barreto says, and are going on chronically bad first dates. For Pheramor, this provided an opportunity, and Barreto took it.

Since its nation-wide launch in September, Pheramor has seen over 5000 messages sent on the app, resulting in 19 happy couples to date. Pheramor has even been nominated for Best New Dating App by iDate, an international conference where Barreto recently gave a keynote speech.

Pheramor works like any other dating app — except instead of swiping through endless possibilities, you see your estimated compatibility with each person based on DNA and interests that are either data mined off your social media or you manually plug into the app. Users first download the app, create an account, and request a kit.

While the B-to-C side of things has been a great approach for Pheramor, the technology has attracted interest from other dating apps. Barreto says she looks to expand into B-to-B opportunities where establishing dating companies can use her technology across the world. She made this clear in here iDate keynote address.

"I said there that if you want to factor in DNA to your dating app, you come to us. We are a B-to-C dating app, but we can also offer our genetic testing services for your platform," she says. "We have a letter of intent with a dating app in Russia. We're speaking with high-end matchmakers."

Barreto sat down with InnovationMap to discuss Pheramor's origins and what she has up her sleeves.

InnovationMap: When did you first have the idea for Pheramor?

Brittany Barreto: I first had the idea when I was 18 at Drew University, where I did my undergraduate research in New Jersey. We were in a genetics seminar, and we were learning about genetic-based human attraction — essentially how scientists for decades can predict who's attracted to whom because of your DNA. I raised my hand and asked if I could make a gene-harmony because of this. The professor and the class kind of laughed, but I said, "No, I'm serious, could I use this science for dating?" The professor said, "I mean, I guess you could." So I thought, one day I'll make gene-harmony.

IM: How did you get involved in the Houston innovation scene?

BB: I finished college and came down here to Houston to get my PhD at Baylor College of Medicine, and I just always had this idea, and I kept thinking about it. When I was working on my PhD, I realized I just had way too much personality to work in a lab my whole life. I started taking some entrepreneurship classes and networking at startup events thinking that I could land a career at a biotech company doing sales or innovation. All of the sudden, people started telling me that I had the founder blood, and I thought well I only have one really crazy idea for a DNA-based dating app, and people told me it was a good idea.

IM: What was your first move launching the company?

BB: I joined an accelerator in the medical center through Enventure. They have about 2,000 members — a lot of PHDs and grad students with a lot of great ideas who have no clue how to start a company. So, Enventure puts on evening classes for free, networking events, brainstorming sessions, and the accelerator. I pitched my idea, and got accepted. That's where I found my co-founder Bin Huang. Between January and March of 2017 we were in the accelerator every Thursday.

IM: How did you first get funding?

BB: We did our Demo Day in March at TMCx, and we won. A few angel investors came up to us after words with the idea for an open round, and Bin and I realized this wasn't a class project any more. This was real. We closed our first round of funding in July of 2017, while Bin and I were full-time students. We met our goal, and then we had another round of funding that was oversubscribed.

IM: When did you start accepting swabs and daters?

BB: Our first swab actually came from a swab party I had at my apartment. I invited about 50 friends over, and we had a party. We had a swab station set up in my bedroom and people waited in line in the hallway. That was our first 50 swabs. It was in the spring of 2017, right after our Demo Day.

IM: So, how does Pheramor work?

BB: The science behind attraction based on your DNA is that people are attracted to one another when their immune systems are different — opposites attract is biologically true. This is what all of the animal kingdom does. When we were cavewomen and cavemen, we didn't know who was our uncle and who was our cousin, so we used our nose to figure out who is genetically diverse compared to us, and if you're genetically diverse, then you're probably not my relative, and therefore we'd have healthier children. So, that's the baseline of attraction. We have these HLA genes that make up our immune system, and your pheromones are giving off essentially like a fingerprint of what your immune system is.

At Pheramor, we look at those 11 genes of attraction — we don't look at anything else. Some people might be concerned that I'll know their ancestry or their diseases and sell their data, but we don't look at that. I actually don't even know your gender based on the swab.

My co-founder and I have written this machine-learning algorithm that looks at the genes and figures out quantitatively how likely it is for you to have physical chemistry with one another. Then, in the app, you can have a score and match report to see that.

IM: What were some of the early challenges?

BB: The biggest one when I was 18 was that the market wasn't ready. I called it "geneharmony" because eHarmony and Match were the only players in the game back then. Also, sending your spit in the mail was really weird. It's not so weird any more.

The next one was being a PhD student working in a field that expects everyone to go into academia. There's not enough academic jobs for scientists anymore. We have to start branching out — work in biotech, become consultants, work in other industries. But the issue is there's an old guard in academia. I had a mentor — a woman I worked for — who had only ever trained academics and thinks that that's what scientists do. So, I didn't experience a lot of support in school for starting a company. It's super cool and I'm successful, and it gives Baylor College of Medicine a great name, but when I was in there, I kept Pheramor a secret. I had to essentially sneak around to do it. Get to the lab really early in the mornings to start experiments so I could leave early for investor meetings or hide in the storage closet to make calls to investors.That was definitely difficult.

Another challenge was starting to pitch and being called the "student team." Right off the bat, they felt like they were doing us a favor for letting us pitch. It was cute. So, I had to start doing some strategies to make my company seem more valuable because I was going uphill. I would wear a lab coat and if any other scientist wore a lab coat to a presentation with scientists, it would be weird, but no investor ever asked me why I was in a lab coat.

IM: A year and a half later since your first swab party, how have things changed?

BB: It's funny, I was just thinking a while back about having a Halloween party and thinking, "we could swab people!" So, I'm not above swab parties. For most of 2017, we did a lot of grassroots efforts. We were at Pride Festival, swab parties at bars, Day For Night — some were successful, and others were a waste of money. It was a science of figuring out what works. There's so much education we have — what the swab is, how it works, etc. In person, we got to explain all that and hear what their questions were and take that and turn it into a FAQ section on our site.

IM: Where can people use your app?

BB: We're nationwide. We're actually downloaded in every state in the country. We did what the market told us to. One day I came into the office and asked my co-founder why we wanted to only be in Houston. He told me that people want to date other daters. And I asked him if we knew that or if we just think that. We never actually asked them. So, we surveyed our user base and asked them if they had highly compatible numbers with someone in, say, Chicago, would they want to know. And something like 89 percent said yes. We realized that our consumers are 28- to 38-year-old singles seeking commitment. They are highly educated and have really great paying jobs, and they travel a lot anyways. So, we opened it up on September 7, and in 30 days we saw over 50 percent growth in our user base.

IM: Are you marketing in specific metros?

BB: At first, we did a blanket marketing effort. Then, we looked into which cities had the lowest CAD — the cost to acquire a download. New York City and Boston are the cheapest. San Francisco, Los Angeles, and Miami are also cheaper than Houston.

IM: What are some goals for you and Pheramor?

BB: Short term, it's to continue to improve our app. We're slowly building it in response to what consumer feedback says. I also want to build our team. With the next round of funding, that's what I'm focused on. Our CMO and CFO are part time, and I want them full time. I also want to be hitting critical mass in Boston, New York, LA, Miami. We have a few hundred people in each of those cities, but I want to make those to be a really healthy number.

And something the market has asked for a lot is testing for couples. So, we have a we a website that's about to launch called "WeHaveChemistry.com" for couples to buy two kits and receive a report.

As an academic in genetics, I had to take a lot of ethics classes — for good reason. We've really taken a stance here at Pheramor saying that we will only use genetic data for good. We do not sell our data to anyone, except one organization with the user's consent. The organization is Gift of Life, a national bone marrow registry. The genes for attraction are also genes that fight leukemia and lymphoma. To register to be a bone marrow donor, you have to get your cheek swabbed and you have to get your HLA genes typed. That's what we're doing as a dating app. So through our app, you can consent to be a donor. That to me is how you could use data for good. We're finding people love, and we're finding a girl with leukemia a bone marrow donor.

------

Portions of this interview have been edited. 

Pheramor takes users' DNA and social media habits and matches them with compatible partners. Courtesy of Pheramor

Houston DNA-based dating app expands nationwide, launches next funding round

From swiping to swabbing

Houston singles can find their perfect match — even if it's someone across the country. Houston-based Pheramor — a DNA-based dating app — is available for download in every state.

Brittany Barreto, Pheramor's co-founder and CEO, has a PhD in genetics from Baylor College of Medicine. She first had the idea in a genetics seminar when she was 18 and in college, but that was almost 10 years ago, and the market wasn't ready. Now, she says singles have swipe fatigue from the existing and ineffective dating apps, and it's also relatively normal now to send your spit in the mail thanks to 23AndMe.

Pheramor users download the app and request a test kit. After a few cheek swabs, they send it back to Barreto and her team and they identify 11 immune system genes and upload the data to the user's profile. The app then compares the genes to other users to give a compatibility score.

"The science behind attraction based on your DNA is that people are attracted to one another when their immune systems are different — opposites attract is biologically true," Barreto says. "When we were cavewomen and cavemen, we didn't know who was our uncle and who was our cousin, so we used our nose to figure out who is genetically diverse compared to us. If you're genetically diverse, then you're probably not my relative, and therefore we'd have healthier children."

Pheramor also calculates a social score based on a questionnaire or a data mine of a user's social media. The overall compatibility score uses both the DNA and social compatibility scores.

The app launched in Houston in March to a great reception of local singles, but, a few months later, Barreto realized nothing was holding them back from expanding nationwide.

"We surveyed our user base and asked them if they had highly compatible numbers with someone in, say, Chicago, would they want to know," Barreto says. "And something like 89 percent said yes."

Pheramor users are usually between 28 and 38, have good paying jobs, and are seeing commitment, Barreto says. Most of them travel around a lot already.

"We opened it up on September 7, and in 30 days we saw over 50 percent growth in our user base."

The company has zeroed in on a few key metros where advertising dollars go a long way for generating user downloads; Boston, New York, San Francisco, Los Angeles, and Miami have all been great markets for Pheramor.

With the user base growing, Barreto is focused on growing her team. Pheramor's current round of funding launched November 1, and with the capital raised, she hopes to be able to make the team's CFO and chief marketing officer both full time.

Pheramor is also working on using its custom algorithm as a resource to other existing dating services worldwide as well as for couples who want to see their compatibility score with their current partners.

"A long-term goal that's coming to fruition a lot faster than I thought is Pheramor being a leader in genetic testing for romance," Barreto says.

Science of love

Karla Martin/Pheramor

Pheramor CEO and co-founder, Brittany Barreto, first thought of a DNA-based dating company when she was in undergraduate student studying biology. The idea stuck with her as she went through her genetics doctoral program at Baylor College of Medicine.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

How Houston's innovation sector fared in 2025 Texas legislative session

That's a Wrap

The Greater Houston Partnership is touting a number of victories during the recently concluded Texas legislative session that will or could benefit the Houston area. They range from billions of dollars for dementia research to millions of dollars for energy projects.

“These wins were only possible through deep collaboration, among our coalition partners, elected officials, business and community leaders, and the engaged members of the Partnership,” according to a partnership blog post. “Together, we’ve demonstrated how a united voice for Houston helps drive results that benefit all Texans.”

In terms of business innovation, legislators carved out $715 million for nuclear, semiconductor, and other economic development projects, and a potential $1 billion pool of tax incentives through 2029 to support research-and-development projects. The partnership said these investments “position Houston and Texas for long-term growth.”

Dementia institute

One of the biggest legislative wins cited by the Greater Houston Partnership was passage of legislation sponsored by Sen. Joan Huffman, a Houston Republican, to provide $3 billion in funding over 10 years for the Dementia Prevention and Research Institute of Texas. Voters will be asked in November to vote on a ballot initiative that would set aside $3 billion for the new institute.

The dementia institute would be structured much like the Cancer Prevention and Research Institute of Texas (CPRIT), a state agency that provides funding for cancer research in the Lone Star State. Since its founding in 2008, CPRIT has awarded nearly $3.9 billion in research grants.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our healthcare community. Now, it’s up to voters to ensure this initiative moves forward.”

More than 500,000 Texans suffer from some form of dementia, including Alzheimer’s disease, according to Lt. Gov. Dan Patrick.

“With a steadfast commitment, Texas has the potential to become a world leader in combating [dementia] through the search for effective treatments and, ultimately, a cure,” Patrick said.

Funding for education

In the K-12 sector, lawmakers earmarked an extra $195 million for Houston ISD, $126.7 million for Cypress-Fairbanks ISD, $103.1 million for Katy ISD, $80.6 million for Fort Bend ISD, and $61 million for Aldine ISD, the partnership said.

In higher education, legislators allocated:

     
  • $1.17 billion for the University of Houston College of Medicine, University of Texas Health Science Center at Houston, UT MD Anderson Cancer Center, and Baylor College of Medicine
  • $922 million for the University of Houston System
  • $167 million for Texas Southern University
  • $10 million for the Center for Biotechnology at San Jacinto College.

Infrastructure

In the infrastructure arena, state lawmakers:

     
  • Approved $265 million for Houston-area water and flood mitigation projects, including $100 million for the Lynchburg Pump Station
  • Created the Lake Houston Dredging and Maintenance District
  • Established a fund for the Gulf Coast Protection District to supply $550 million for projects to make the coastline and ship channel more resilient

"Nuclear power renaissance"

House Bill 14 (HB 14) aims to lead a “nuclear power renaissance in the United States,” according to Texas Gov. Greg Abbott’s office. HB 14 establishes the Texas Advanced Nuclear Energy Office, and allocates $350 million for nuclear development and deployment. Two nuclear power plants currently operate in Texas, generating 10 percent of the energy that feeds the Electric Reliability Council Texas (ERCOT) power grid.

“This initiative will also strengthen Texas’ nuclear manufacturing capacity, rebuild a domestic fuel cycle supply chain, and train the future nuclear workforce,” Abbott said in a news release earlier this year.

One of the beneficiaries of Texas’ nuclear push could be Washington, D.C.-based Last Energy, which plans to build 30 micro-nuclear reactors near Abilene to serve power-gobbling data centers across the state. Houston-based Pelican Energy Partners also might be able to take advantage of the legislation after raising a $450 million fund to invest in companies that supply nuclear energy services and equipment.

Reed Clay, president of the Texas Nuclear Alliance, called this legislation “the most important nuclear development program of any state.”

“It is a giant leap forward for Texas and the United States, whose nuclear program was all but dead for decades,” said Clay. “With the passage of HB 14 and associated legislation, Texas is now positioned to lead a nuclear renaissance that is rightly seen as imperative for the energy security and national security of the United States.”

---

A version of this article first appeared on EnergyCapitalHTX.com.

Microsoft partners with Rice University's OpenStax on AI teaching tool

group project

Rice University’s OpenStax and Microsoft are partnering to integrate the nonprofit’s content with the tech giant’s AI innovation, known as Learning Zone.

“At OpenStax, our mission is to make an amazing education accessible to all,” Richard G. Baraniuk, founder and director of OpenStax, said in a news release. “That’s why we’re excited to integrate our trustworthy, peer-reviewed content with Microsoft’s AI technology through the Microsoft Learning Zone. Together, we aim to help more instructors and their students access engaging, effective learning experiences in new and dynamic ways. We also share a strong commitment to the thoughtful and responsible application of AI to better ensure all learners can succeed.”

OpenStax is a provider of affordable instructional technologies and is also one of the world’s largest publishers of open educational resources (OER).

Microsoft Learning Zone promises to provide educators and students with “responsible AI technology and peer-reviewed educational content to support learning” on Microsoft Copilot+ PCs. Microsoft Learning Zone works by utilizing on-device AI to generate interactive lessons for students, and its integration with OpenStax content means educators can rely on OpenStax’s digital library of 80 openly licensed titles.

The goal is for educators to create effective and engaging learning experiences safely, thereby bypassing the need to source and vet content independently. Included is a library of ready-to-use lessons, opportunity for immediate feedback and differentiated learning. Educators will maintain control of instructional content and pedagogical strategies and will be able to update or edit lessons or activities prior to sharing them with students.

Other tools included in the Microsoft Learning Zone are additional languages, reading coaching, public speaking help, math and reading progress, and a partnership with the online quiz platform Kahoot!

OpenStax resources have been reported as used across 153 countries, and this current collaboration combines the power and potential of responsible AI usage in education with content that has been utilized by 13,569 K-12 schools and 71 percent of U.S. colleges and universities, according to Rice.

“Through our partnership with OpenStax, we’re combining the power of on-device AI in Copilot+ PCs with OpenStax’s trusted and diverse peer-reviewed content to help educators quickly create high-quality, personalized, engaging lessons,” Deirdre Quarnstrom, vice president of Microsoft Education, added in the news release. “We’re excited about how this collaboration will empower classrooms globally.”