Even in light of community concerns, HISD is moving forward on its pursuit to receive a District of Innovation designation. Getty Images

In the Houston Independent School District's board meeting on Thursday, May 14, the board of trustees voted in favor to begin a process that would designate HISD a District of Innovation.

The ruling allows HISD to begin the process of receiving the DOI designation and to join the almost 900 other Texas school districts with the designation, which would be implemented for the 2021-2022 school year.

The designation would allow for several exemptions from state law, including beginning the school year earlier than the fourth Monday in August, allowing flexibility in attendance requirements, and allowing for non-accredited teachers to conduct Career and Technical Education courses.

Before the HISD board discussed the motion and voted, they heard from community members who expressed concern with this particular accreditation matter during the meeting's call for community speakers. Due to COVID-19, the speakers wrote in their concerns, which were then read for the board.

Andrew Dewey, executive vice president of the Houston Federation of Teachers, asked the board to oppose the motion as the exemptions allowed by DOI aren't in themselves innovative, he says.

To allow for non-accredited CTE instructors, "the district would have to be exempted from the entire section of the law requiring certification," writes Dewey. "That action would open the door for future administration and school boards or board of managers to allow non-certified teachers in other content areas."

Several other community members voiced this concern over allowing non-accredited teachers, and another concern was timing of the motion. A few community members argued that now is not the time to pursue the DOI designation — and Trustee Elizabeth Santos of District I echoed that concern.

"Our students deserve better than to have something shoved down their throat when there's a pandemic, and we should be solely focusing on safety and instruction," Santos says in the meeting.

Trustee Anne Sung of District VII made a motion to push back voting on the matter to the board's June meeting, but the motion was struck down in a 3-6 vote. Moving forward, Sung called for the district to proceed with caution on the accreditation of teachers.

"I want to say publicly that in the plan I will be looking for extreme rigor in protecting certification in our teachers," Sung says in the meeting.

Now that the motion has passed, it has allowed HISD's Superintendent Grenita Lathan to push forward on the DOI designation. The district's next move is to create a planning committee and collect the community's concerns on the process.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.