Camilo Mejia, CEO and founder of Houston-based Enovate Upstream, has big plans for increasing efficiency across the oil and gas sector. Photo courtesy of Enovate

A Houston energy tech company announced a new artificial intelligence platform that aims to digitize the oil and gas sector to provide the best efficiency and return on investment at every stage of the supply chain cycle — from drilling and production to completion.

Enovate Upstream's exponential growth, says Camilo Mejia, CEO and founder of the company, has already led to two new strategic partnerships in the works with European and Latin American companies.

"We see a better future in the oil and gas industry," Mejia shares in an interview with InnovationMap. "Our team worked in various roles in O&G, and we don't think the industry will end up as some people may think. The future will be different and digitized, we are just here to facilitate that transition to give back to the industry that gave us a lot."

The company's proprietary cloud-based ADA AI digital ecosystem is challenging the assumptions of the industry by using new technology powered artificial intelligence to provide historical data with AI to give real-time production forecasting. Thanks to the cloud, users can access the information anywhere in the world.

The new platform combines three models — digital drilling, digital completions, and digital production — that provide precise data that can be customized to the client's needs, integrating into an existing platform easily for a real-time view of their return on investment and carbon emission output.

Mejia shares more about his company's growth and what goals Enovate Upstream is setting to continue the course of digitization in the oil and gas industry in the Q&A with InnovationMap.

InnovationMap: What inspired Enovate Upstream’s focus on artificial intelligence technology for the upstream value chain?

CamiloMejia: For the past five or six years, there's been talk of digitalization, and the value of data. The next level is not the value of the data, it's about the automation, how you can improve operations, and how you can help customers to make better decisions. Every single technology that we are developing here is about the return of investment.

Our AI concept is about the physics behind the data. We are accelerating digital adoption by properly showing the tangible value of the technology by speaking the same language and showing the value from the oil and gas perspective, which was one of the challenges other AI technology faced to break into the industry before. Our artificial intelligence component upgrades this technology to optimize the industry while integrating it with this digital ecosystem all in one place. The digital ecosystem we're building covers the entire value chain.

One of the challenges the industry faces is around capital allocation — how we can help customers to properly allocate capital into projects, which is a fundamental way we forecast new projects. Another challenge is the size of the organization that ranges from corporations to small businesses. They have many opportunities to improve cost but that varies across companies.

We are overcoming that challenge in order to develop a technology that can show the inefficiencies between the sizes. The third challenge is the adoption of digital technology. There are two different ways of deploying artificial intelligence. One is data-driven analysis, data-driven models, or data trading — this is the foundation.

IM: What fundamental changes do you think your cloud-based ADA technology can provide across every stage of the value chain?

CM: The biggest change we have in the platform is revising the workflow based on the production size. We use the data the customers already have, to develop a model that changes the way we forecast production in the industry. Before you deploy the capital and execute the project, you are going to have a better idea of the maximum potential profitability, so you can make better decisions at any stage from that point.

One of the inspirations for this was Tesla. The automotive industry was failing to provide a self-driving vehicle because it was using mathematical approaches, but Tesla overcame that challenge using data of millions of drivers to drive and park the cars efficiently, optimizing the process.

We are doing exactly the same, which is applying mathematical equations only for drilling forecasts, production forecasts, and using the data from the wells to see how the projects are behaving. We also integrate the modules so every single module is communicating with each other at every stage to correlate back to a production forecast to set your targets or operation based on that expected return of investment.

Our concept is about the return of investment, in order to develop the ROI concept, you got to plan the events right and the varying size production, that becomes the second component. The third component is about optimization of operations, which is about automation to improve operations and therefore decision-making. We are developing technology that has a very modern interface to automate operations in a more intuitive way so customers can be independent in the process and make the best decisions.

IM: At the moment, there is a need for virtual connections. How does your technology allow certain hands-on tasks to be handled remotely?

CM: In many ways, we have a big project in the Gulf of Mexico. We place technologies that we are using in today's market and deploy a platform that customers can use independently. We can also automate operations to the cloud by just deploying, trimming the data out of the field straight to the cloud so that people in the field can actually use the AI component to optimize operations. We don't require face to face interaction using the cloud environment.

Since the coronavirus these digital components have been on demand, we have grown about 500 percent from the end of Q1 and into the middle of Q2. We are experiencing an acceleration in the adoption of digital technology, but the ability to deploy the technology through the cloud has been instrumental in gaining more traction in the market. As a matter of fact, just as an indicator, we have been hiring people since the start of the coronavirus.

IM: Enovate Upstream started a year ago since then you’ve experienced exponential growth. What are a couple of goals that the company will achieve by the end of the year?

CM: Our strategy is focused on the next level for the company, which is securing funding round with investors in London. We are also aiming to facilitate the deployment of our technology globally. We are focusing on the United States and Latin America, but we hope to expand our funding round to Europe and the Middle East.

Our other goal lies with our partnerships, we are working through a distribution channel, through larger service companies that are facilitating the commercialization of the technology. The focus is on enabling these companies to properly support the customers by doing more technology integration and increasing the value creation.

The next goal is obviously to sustain the company, even though we have been growing, there is a lot of uncertainty in the market, and we are focusing on building the culture of the company, which is challenging in a virtual space.

IM: How has Enovate Upstream navigated an unstable market amid your rapid growth?

CM: That's a good question. I think the lesson is that you can always end up in a different direction. Coronavirus is having a big impact on many businesses, often negatively, but for us, it was instrumental to realize the full potential of the technology we were developing.

We saw that the activity was going from operations to the financial sector with companies selling assets to sustain their business. There were a lot of customers trying to decide what kind of wells they need to continue producing, so that was a market that we didn't capture before.

We grew the technology in that direction by starting a second company called Energy Partners. We created a joint venture with some producers in South Texas to make better decisions in asset acquisition. It was instrumental for us to realize the full potential on the finance side, as opposed to operations where the initial focus was.

We have assets in South Texas now and from a technology standpoint, it's the ideal way to test our analytic technology. We use our technology to properly evaluate the return of investment to make decisions about acquiring assets to optimize the operations and increase production. We have the opportunity to prove the technology with our investments, so we can actually build trust with customers. We are 100 percent sure that the technology works the way we say it works.

IM: There’s a huge emphasis on sustainability in the energy industry. How does your technology reduce carbon emissions?

CM: There are two kinds of components here. The first one is about optimizing operations — personnel transportation at the field level. We have studied calculations of what carbon dioxide output looks like to reduce it in terms of optimizing transportation, technology, and contributing to innovative ideas. We are currently initiating a feasibility study on a carbon capture technology, and working with customers to provide value in the technology in various aspects.

IM: I see several partnerships have already begun. Are you looking for more and what role do these partnerships play for your business?

CM: We have two partnerships about to close. One is with Telefonica, a Spanish telecommunications company, and another with Pluspetrol, an Argentinian production company. Telefonica provides cybersecurity services to oil and gas companies, we actually work with them to deploy our technology in Latin America and Europe. They provide the cloud and cybersecurity component while we provide the AI component.

In terms of our technology development, Pluspetrol has been one of our partners from the very beginning and we continue developing more technologies with this particular customer. They provide us with access to real data and real operational conditions that facilitate technological innovation.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.