Using biased statistics in hiring makes it more difficult to predict job performance. Photo via Getty Images

The Latin phrase scientia potentia est translates to “knowledge is power.”

In the world of business, there’s a school of thought that takes “knowledge is power” to an extreme. It’s called statistical discrimination theory. This framework suggests that companies should use all available information to make decisions and maximize profits, including the group characteristics of potential hires — such as race and gender — that correlate with (but do not cause) productivity.

Statistical discrimination theory suggests that if there's a choice between equally qualified candidates — let's say, a man and a woman — the hiring manager should use gender-based statistics to the company's benefit. If there's data showing that male employees typically have larger networks and more access to professional development opportunities, the hiring manager should select the male candidate, believing such information points to a more productive employee.

Recent research suggests otherwise.

A peer-reviewed study out of Rice Business and Michigan Ross undercuts the premise of statistical discrimination theory. According to researchers Diana Jue-Rajasingh (Rice Business), Felipe A. Csaszar (Michigan) and Michael Jensen (Michigan), hiring outcomes actually improve when decision-makers ignore statistics that correlate employee productivity with characteristics like race and gender.

Here's Why “Less is More”

Statistical discrimination theory assumes a correlation between individual productivity and group characteristics (e.g., race and gender). But Jue-Rajasingh and her colleagues highlight three factors that undercut that assumption:

  • Environmental uncertainty
  • Biased interpretations of productivity
  • Decision-maker inconsistency

This third factor plays the biggest role in the researchers' model. “For statistical discrimination theory to work,” Jue-Rajasingh says, “it must assume that managers are infallible and decision-making conditions are optimal.”

Indeed, when accounting for uncertainty, inconsistency and interpretive bias, the researchers found that using information about group characteristics actually reduces the accuracy of job performance predictions.

That’s because the more information you include in the decision-making process, the more complex that process becomes. Complex processes make it more difficult to navigate uncertain environments and create more space for managers to make mistakes. It seems counterintuitive, but when firms use less information and keep their processes simple, they are more accurate in predicting the productivity of their hires.

The less-is-more strategy is known as a “heuristic.” Heuristics are simple, efficient rules or mental shortcuts that help decision-makers navigate complex environments and make judgments more quickly and with less information. In the context of this study, published by Organization Science, the heuristic approach suggests that by focusing on fewer, more relevant cues, managers can make better hiring decisions.

Two Types of Information "Cues"

The “less is more” heuristic works better than statistical discrimination theory largely because decision makers are inconsistent in how they weight the available information. To factor for inconsistency, Jue-Rajasingh and her colleagues created a model that reflects the “noise” of external factors, such as a decision maker’s mood or the ambiguity of certain information.

The model breaks the decision-making process into two main components: the environment and the decision maker.

In the environment component, there are two types of information, or “cues,” about job candidates. First, there’s the unobservable, causal cue (e.g., programming ability), which directly relates to job performance. Second, there's the observable, discriminatory cue (e.g., race or gender), which doesn't affect how well someone can do the job but, because of how society has historically worked, might statistically seem connected to job skills.

Even if the decision maker knows they shouldn't rely too much on information like race or gender, they might still use it to predict productivity. But job descriptions change, contexts are unstable, and people don’t consistently consider all variables. Between the inconsistency of decision-makers and the environmental noise created by discriminatory cues, it’s ultimately counterproductive to consider this information.

The Bottom Line

Jue-Rajasingh and her colleagues find that avoiding gender- and race-based statistics improves the accuracy of job performance predictions. The fewer discriminatory cues decision-makers rely on, the less likely their process will lead to errors.

That said: With the advent of AI, it could become easier to justify statistical discrimination theory. The element of human inconsistency would be removed from the equation. But because AI is often rooted in biased data, its use in hiring must be carefully examined to prevent worsening inequity.

------

This article originally ran on Rice Business Wisdom based on research by Rice University's Diana Jue-Rajasingh, Felipe A. Csaszar (Michigan) and Michael Jensen (Michigan). For more, see Csaszar, et al. “When Less is More: How Statistical Discrimination Can Decrease Predictive Accuracy.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.