Daytum exists to train coding experts in oil and gas. Getty Images

Nearly 2,000 miles separate the energy industry of Houston and Silicon Valley where startups have cropped up to help manage the thousands of data points collected on oil rigs each day. The different geographies have developed their own dialects: data scientists on the West Coast talk about how operations should be, according to their models, while the lingo of Third Coast engineers and technicians centers on oil-specific operations.

Last year, while working in natural resource investing from Houston, Kunal Rayakar realized he had heard from a number of students who could, uniquely, speak both. The reason: They knew coding languages, which meant they could analyze their own data and bridge that gap between the coasts. When Rayakar followed the trail of students to the University of Texas at Austin, he found two engineering professors, John Foster and Michael Pyrcz, who were teaching their students data skills as part of the curriculum. They started talking, and eventually Foster and Rayakar founded daytum — and soon after, Pyrcz joined, too.

"The intention is to give people more awareness of the data that comes through, so they can make faster decisions," Rayakar says.

An education program for workers in the energy industry, daytum hosts workshops and an online learning network for technicians and engineers to better understand the data they're working with. This, Rayakar says, helps them exercise more control over the work — especially for those whose preliminary training in the field was before data became indispensable to the job. The professors and Kunal host two– or five-day workshops, and just a few weeks ago, they held both introductory and intermediate courses at the University of Houston.

The professors teach Python, a common programming language. Although there's a learning curve to studying Python, it's not as confusing as some of the tools, like MATLAB, that engineers studied in their undergraduate educations. But students don't actually have to become Python experts at all — instead, they use Jupyter, an online digital notebook that can import Python packages, which are large and ready-made coding sequences.

Often, these are free and available to download on sites like Github. Daytum professors teach packages that are useful for analyzing and visualizing the data they work with in the field, and students leave having a usable workstation on their computers, ready to be installed and implemented in their work.

"People really enjoyed the courses," Rayakar says. "We were really happy."

But right now, daytum's main goal is to continue to grow its workshops — including introducing Austin bootcamps, to engage people in learning, and to empower oil industry technicians to navigate the industry's digital transition more smoothly.

"By building longer-term solutions and cultures, we can build better educations," Rayakar says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.