MD Anderson’s goal with the new Institute for Data Science in Oncology is to advance collaborative projects that will bring the power of data science to every decision made at the hospital. Photo via mdanderson.org

The University of Texas MD Anderson Cancer Center is one step closer to ending cancer thanks to its new institute that's focused on data science.

MD Anderson’s goal with the new Institute for Data Science in Oncology (IDSO) is to advance collaborative projects that will bring the power of data science to every decision made at the hospital. And now, the IDSO has announced its inaugural cohort of 33 scientists, clinicians, and staff that will bring it to life, joining the already appointed leadership and focus area co-leads.

“By engaging diverse expertise across all of our mission areas, we will enhance the rich and productive data science ecosystem at MD Anderson to deliver transformational impact for patients,” David Jaffray, Ph.D., director of IDSO and chief technology and digital officer at MD Anderson, says in a press release.

The focus areas for the IDSO are quantitative pathology and medical imaging; single-cell analytics; computational modeling for precision medicine; decision analytics for health; and safety, quality, and access.

The IDSO Affiliates, as they are known, are a mix of existing contributors to the IDSO and team members who were recruited specifically for their expertise in data science. The affiliates were chosen to fulfill a two-year term, during which they will focus on IDSO projects related to the focus areas above. The diverse roster of professionals includes:

“Our affiliates bring expertise, perspectives and commitment from across the institution to foster impactful data science in order to tackle the most urgent needs of our patients and their families,” said Caroline Chung, M.D., director of Data Science Development and Implementation for IDSO and chief data officer at MD Anderson. “People and community are at the heart of our efforts, and establishing the IDSO Affiliates is an exciting step in growing the most impactful ecosystem for data science in the world.”

Six Houston inventors have been recognized with the highest professional distinction for inventors within academia. Photo via Pexels

6 Houston-area inventors named fellows in prestigious program

best in class

The National Academy of Inventors has announced its annual set of NAI Fellows — and six Houstonians make the list of the 164 honorees from 116 research institutions worldwide.

The NAI Fellows Program honors academic inventors "who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on the quality of life, economic development, and the welfare of society," according to a news release. The appointment is the highest professional distinction for inventors within academia.

The six Houstonians on the list join a group that hold more than 48,000 U.S. patents, which have generated over 13,000 licensed technologies and companies, and created more than one million jobs, per the release. Additionally, $3 trillion in revenue has been generated based on NAI Fellow discoveries.

These are the scientists from Houston organizations:

    • Zhiqiang An, University of Texas Health Science Center at Houston: An is the director of the Texas Therapeutics Institute, a drug discovery program operated by the John P. and Kathrine G. McGovern Medical School at Houston. He's also a professor of molecular medicine and holder of the Robert A. Welch Distinguished University Chair in Chemistry at UTHealth.
    • Alex Ignatiev, University of Houston: Ignatiev served as director of two NASA-supported research and technology development centers at the University of Houston and as Lillie Cranz and Hugh Roy Cullen Professor of Physics, Chemistry, and Electrical and Computer Engineering.
    • David Jaffray, University of Texas MD Anderson Cancer Center: Jaffray was appointed MD Anderson's first-ever chief technology and digital officer in 2019. He oversees MD Anderson’s Information Services division and Information Security department and is a professor of Radiation Physics with a joint appointment in Imaging Physics.
    • Pei-Yong Shi,The University of Texas Medical Branch: Pei-Yong Shi is a professor and John Sealy Distinguished Chair in Innovations in Molecular Biology Department of Biochemistry & Molecular Biology;. He's also the Vice Chair for Innovation and Commercialization.
    • Ganesh Thakur, University of Houston: Thakur is a pioneer in carbon capture, utilization and storage and has a patent on forecasting performance of water injection and enhanced oil recovery. His team is continuing to push the research envelope for CCUS employing world-class lab research, simulation, machine learning and artificial intelligence.
    • Darren Woodside, Texas Heart Institute: Woodside is the Vice President for Research and Director of the Flow Cytometry and Imaging Core at the Texas Heart Institute. His research centers around the role that cell adhesion plays in cardiovascular and autoimmune diseases, and the development of novel means to identify and treat these diseases.
    Ten other Texas-based innovators made the list, including:
    • Sanjay Banerjee, The University of Texas at Austin
    • Thomas Boland, The University of Texas at El Paso
    • Joan Brennecke, The University of Texas at Austin
    • Gerard Cote, Texas A&M University
    • Ananth Dodabalapur, The University of Texas at Austin
    • Holloway (Holly) H. Frost Jr., The University of Texas at Arlington
    • James E. Hubbard, Texas A&M University
    • Yi Lu, University of Texas at Austin
    • Samuel Prien, Texas Tech University
    • Earl E. Swartzlander Jr., The University of Texas at Austin
    This year's class will be inducted at the Fellows Induction Ceremony at the 11th Annual Meeting of the National Academy of Inventors in June in Phoenix, Arizona.

    "The caliber of this year's class of NAI Fellows is outstanding. Each of these individuals are highly-regarded in their respective fields," says Paul R. Sanberg, president of NAI's board of directors, in the release. "The breadth and scope of their discovery is truly staggering. I'm excited not only see their work continue, but also to see their knowledge influence a new era of science, technology, and innovation worldwide."

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston engineers develop breakthrough device to advance spinal cord treatment

    future of health

    A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

    Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

    The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

    “We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

    The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

    Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

    "Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

    The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

    “In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

    Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

    In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

    That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

    Houston clean hydrogen startup to pilot tech with O&G co.

    stay gold

    Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

    The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

    The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

    The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

    “This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

    The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

    “With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

    ------

    This article originally ran on EnergyCapital.

    3 Houston innovators to know this week

    who's who

    Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

    Omair Tariq, co-founder and CEO of Cart.com

    Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

    Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

    The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

    Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

    Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

    Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

    Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

    Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

    Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

    Han Xiao, associate professor of chemistry at Rice University

    The funds were awarded to Han Xiao, a chemist at Rice University.

    A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

    The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

    “This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.