NOMAD aims to help hikers stay in the moment while still utilizing technology. Photo courtesy UH.

An AI-powered, screen-free hiking system developed by Varshini Chouthri, a recent industrial design graduate from the University of Houston, has received Red Dot’s “Best of the Best” award, which recognizes the top innovative designs around the world.

Known as NOMAD, the system aims to help users stay in the moment while still utilizing technology. It will go on to compete for the Red Dot Luminary Award, the highest recognition given at the international event.

“NOMAD was truly a passion project, inspired by years of hiking growing up, where the outdoors became a place of peace, challenge, and reflection,” Chouthri said in a news release.

“I wanted to design something supporting those kinds of experiences by helping hikers feel more grounded and confident while staying present in nature. It was a way to give back to the moments that made me fall in love with the outdoors in the first place.”

The app “reimagines” outdoor exploration by removing the dependence on screens by using adaptive AI, contextual sensing, and an optional, wearable companion device. It employs a circular learning model that enables hikers to receive real-time guidance, safety alerts, personalized trip planning, hands-free navigation and more through a natural interface, according to UH.

NOMAD was developed at the Hines College of Architecture and Design’s PXD LAB. In 2023, Lunet, developed by David Edquilang at Hines College, received the “Best of the Best” recognition and went on to win the Red Dot Luminary Award.

The PXD LAB offers a platform to expand concepts into system-level designs that address real-world challenges, according to UH.

“Varshini’s work on NOMAD exemplifies the future-focused, systems-driven thinking we promote in the Advanced UX Design curriculum,” Min Kang, director of PXD LAB, added in the release. “NOMAD goes beyond being just a product; it reimagines how technology can enhance outdoor exploration without disrupting the experience.”

In addition to the Red Dot honors, NOMAD has already earned distinction from the FIT Sport Design Awards and was a finalist for the International Design Excellence Awards (IDEA) presented by the Industrial Designers Society of America.
This Houstonian is celebrating a major win for the prosthesis device he created while at the University of Houston. Photo via UH.edu

Groundbreaking prosthesis device designed at UH earns international ‘luminary’ award

give him a hand

A recent University of Houston graduate is receiving international recognition for his 3D-printable finger prosthesis.

David Edquilang, the creator of a low-cost prosthesis known as Lunet, was awarded the 2023 Red Dot: Luminary award last month at the Red Dot Award: Design Concept ceremony in Singapore. The luminary award is the highest recognition given at the international event, according to a release from UH.

Edquilang, who graduated from UH in 2022, developed Lunet while he was a student at the Gerald D. Hines College of Architecture and Design and under the mentorship of UH associate professor and co-director of the Industrial Design program Jeff Feng.

The prosthesis is made up of polylactic acid and thermoplastic polyurethane, two common types of 3D-printed plastics, and designed to be simple but essentially indestructible.

Lunet's "fingers" are made of four parts held together by plastic pins, compared to other prosthetics that feature many different parts and require metal fasteners, adhesives or tools.

“The problem with higher mechanical complexity is that these designs are less durable,” Edquilang says in the statement. “The more parts you have, the more points of failure. You need to make prosthetic fingers robust and as strong as possible, so it doesn’t break under normal use, yet you want the design to be simple. This was one of the greatest challenges in making Lunet.”

Lunet is also unique in that it includes a linkage mechanism that allows the fingers' distal knuckle (closest to the fingertip) to be more flexible, and even partially hyperextend backward to be more durable and realistic.

What's perhaps the rarest component of Lunet is that Edquilang has made it open access on the internet.

“Not every good idea needs to be turned into a business. Sometimes, the best ideas just need to be put out there,” Edquilang adds. “Medical insurance will often not cover the cost of a finger prosthesis, since it is not considered vital enough compared to an arm or leg. Making Lunet available online for free will allow it to help the greatest number of people."

The concept was born after Edquilang worked on an upper limb prosthesis with fellow UH student Niell Gorman. After that project wrapped, Edquilang, in partnership with Harris Health System, began designing a prosthetic hand for a woman who had lost three fingers due to frostbite. Edquilang and Feng continued to refine the product, and after conceptualizing the breakthrough idea for the flexible linkage for the distal knuckle, Lunet became what it is today.

The product has also won a 2023 Red Dot: Best of the Best award, two 2023 DNA Paris Design Awards, Gold for the 2023 Spark Design Award, and is currently a U.S. National Runner Up for the 2023 James Dyson Award.

“It feels great knowing you have the capability to positively impact people’s lives and give them help they otherwise wouldn’t be able to get,” Edquilang says.

This summer UH researchers also published their work on a wearable human-machine interface device that can track and record important health information but is less noticeable and lighter than a Band-Aid. The device could be attached to a robotic hand or prosthetic, as well as other robotic devices that can collect and report information to the wearer.

Also this summer, a team from Rice published their work on a new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer. The technology, which was backed by the National Science Foundation, has uses for those with visual and auditory impairments and offers a slimmed-down design compared to other bulky complex haptic wearables.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics