NOMAD aims to help hikers stay in the moment while still utilizing technology. Photo courtesy UH.

An AI-powered, screen-free hiking system developed by Varshini Chouthri, a recent industrial design graduate from the University of Houston, has received Red Dot’s “Best of the Best” award, which recognizes the top innovative designs around the world.

Known as NOMAD, the system aims to help users stay in the moment while still utilizing technology. It will go on to compete for the Red Dot Luminary Award, the highest recognition given at the international event.

“NOMAD was truly a passion project, inspired by years of hiking growing up, where the outdoors became a place of peace, challenge, and reflection,” Chouthri said in a news release.

“I wanted to design something supporting those kinds of experiences by helping hikers feel more grounded and confident while staying present in nature. It was a way to give back to the moments that made me fall in love with the outdoors in the first place.”

The app “reimagines” outdoor exploration by removing the dependence on screens by using adaptive AI, contextual sensing, and an optional, wearable companion device. It employs a circular learning model that enables hikers to receive real-time guidance, safety alerts, personalized trip planning, hands-free navigation and more through a natural interface, according to UH.

NOMAD was developed at the Hines College of Architecture and Design’s PXD LAB. In 2023, Lunet, developed by David Edquilang at Hines College, received the “Best of the Best” recognition and went on to win the Red Dot Luminary Award.

The PXD LAB offers a platform to expand concepts into system-level designs that address real-world challenges, according to UH.

“Varshini’s work on NOMAD exemplifies the future-focused, systems-driven thinking we promote in the Advanced UX Design curriculum,” Min Kang, director of PXD LAB, added in the release. “NOMAD goes beyond being just a product; it reimagines how technology can enhance outdoor exploration without disrupting the experience.”

In addition to the Red Dot honors, NOMAD has already earned distinction from the FIT Sport Design Awards and was a finalist for the International Design Excellence Awards (IDEA) presented by the Industrial Designers Society of America.
This Houstonian is celebrating a major win for the prosthesis device he created while at the University of Houston. Photo via UH.edu

Groundbreaking prosthesis device designed at UH earns international ‘luminary’ award

give him a hand

A recent University of Houston graduate is receiving international recognition for his 3D-printable finger prosthesis.

David Edquilang, the creator of a low-cost prosthesis known as Lunet, was awarded the 2023 Red Dot: Luminary award last month at the Red Dot Award: Design Concept ceremony in Singapore. The luminary award is the highest recognition given at the international event, according to a release from UH.

Edquilang, who graduated from UH in 2022, developed Lunet while he was a student at the Gerald D. Hines College of Architecture and Design and under the mentorship of UH associate professor and co-director of the Industrial Design program Jeff Feng.

The prosthesis is made up of polylactic acid and thermoplastic polyurethane, two common types of 3D-printed plastics, and designed to be simple but essentially indestructible.

Lunet's "fingers" are made of four parts held together by plastic pins, compared to other prosthetics that feature many different parts and require metal fasteners, adhesives or tools.

“The problem with higher mechanical complexity is that these designs are less durable,” Edquilang says in the statement. “The more parts you have, the more points of failure. You need to make prosthetic fingers robust and as strong as possible, so it doesn’t break under normal use, yet you want the design to be simple. This was one of the greatest challenges in making Lunet.”

Lunet is also unique in that it includes a linkage mechanism that allows the fingers' distal knuckle (closest to the fingertip) to be more flexible, and even partially hyperextend backward to be more durable and realistic.

What's perhaps the rarest component of Lunet is that Edquilang has made it open access on the internet.

“Not every good idea needs to be turned into a business. Sometimes, the best ideas just need to be put out there,” Edquilang adds. “Medical insurance will often not cover the cost of a finger prosthesis, since it is not considered vital enough compared to an arm or leg. Making Lunet available online for free will allow it to help the greatest number of people."

The concept was born after Edquilang worked on an upper limb prosthesis with fellow UH student Niell Gorman. After that project wrapped, Edquilang, in partnership with Harris Health System, began designing a prosthetic hand for a woman who had lost three fingers due to frostbite. Edquilang and Feng continued to refine the product, and after conceptualizing the breakthrough idea for the flexible linkage for the distal knuckle, Lunet became what it is today.

The product has also won a 2023 Red Dot: Best of the Best award, two 2023 DNA Paris Design Awards, Gold for the 2023 Spark Design Award, and is currently a U.S. National Runner Up for the 2023 James Dyson Award.

“It feels great knowing you have the capability to positively impact people’s lives and give them help they otherwise wouldn’t be able to get,” Edquilang says.

This summer UH researchers also published their work on a wearable human-machine interface device that can track and record important health information but is less noticeable and lighter than a Band-Aid. The device could be attached to a robotic hand or prosthetic, as well as other robotic devices that can collect and report information to the wearer.

Also this summer, a team from Rice published their work on a new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer. The technology, which was backed by the National Science Foundation, has uses for those with visual and auditory impairments and offers a slimmed-down design compared to other bulky complex haptic wearables.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”