Pamela Melroy, a member of the United States Astronaut Hall of Fame, has joined Venus Aerospace's board of directors. Photo courtesy Venus Aerospace/PRNewsFotos.

Retired Air Force colonel and former NASA astronaut Pamela Melroy, who previously served as deputy administrator of NASA, recently joined the board of directors at Houston-based Venus Aerospace.

Venus Aerospace, a startup founded in 2020, develops rocket engine technology, including rotating rocket detonation engines for hypersonic flights. These engines promise higher power, greater fuel efficiency and lower emissions than conventional rocket engines or jet engines, according to the Interesting Engineering website. The global rocket propulsion market is expected to grow from $9.5 billion in 2025 to $29.9 billion by 2034, according to a forecast by ResearchAndMarkets.com.

“Advanced rocket propulsion has been of interest to me for over a decade, and Venus Aerospace’s recent achievements in demonstrating the stability of rotating detonation rocket engines represent a significant development,” says Melroy, who left NASA earlier this year and is now a self-employed consultant living in Arlington, Virginia.

Melroy, a member of the United States Astronaut Hall of Fame, has built an illustrious career in the aerospace sector. Aside from being a NASA official, she was:

  • One of only two female astronauts to command a space shuttle mission
  • Deputy program manager of Orion space exploration initiatives at aerospace and defense contractor Lockheed Martin
  • Senior technical adviser and director of field operations for the Federal Aviation Administration’s Office of Commercial Space Transportation, where she came up with the first safety guidelines for commercial human spaceflight
  • Deputy director of the Tactical Technology Office at the Defense Advanced Research Projects Agency (DARPA).
  • An adviser for the establishment of the Australian Space Agency

Venus Aerospace said in a news release that as a leader at three federal agencies, “Melroy shaped America’s strategy in space, accelerated commercial space partnerships, and deepened space exploration.”

Sassie Duggleby, co-founder and CEO of Venus Aerospace, called Melroy “a preeminent leader in the world of aerospace.”

In May, Venus Aerospace completed the inaugural test flight of its rotating detonation rocket engine. The startup, whose headquarters is at the Houston Spaceport, says it’s the only company in the world that has manufactured a flight-proven, high-thrust rotating detonation rocket engine.

On the horizon for Venus Aerospace is production of Stargazer M4, a high-speed aircraft capable of two-hour global travel.

Venus Aerospace’s investors include Airbus Ventures, America’s Frontier Fund, Trousdale Ventures, and Prime Movers Lab. The startup also gets support from the Air Force Research Laboratory (AFWERX), the Air Force, NASA and DARPA.

Jordan Blashek, co-founder and managing partner of America’s Frontier Fund, which backs startups creating breakthrough technologies, said his firm’s investment in Venus Aerospace “underscores our focus on supporting American companies that are revolutionizing industries of the future.”

“With recent hypersonic advancements from China and Russia, safeguarding American innovation and securing our industrial base has never been more urgent,” Blashek added. “Venus Aerospace is poised to redefine hypersonic flight and ensure America’s continued leadership in aerospace innovation.”

Since its founding, Venus Aerospace has raised $78.3 million in investments, according to PitchBook data.

Texas A&M will work with DARPA to test fully automated and semi-automated helicopters to combat wildfires in the state. Image by Colie Wertz. Courtesy DARPA.

Texas A&M pilots $59M program for autonomous helicopters to fight wildfires

Autonomous firefighting

Texas A&M University's George H.W. Bush Combat Development Complex will receive $59.8 million to develop a way for autonomous helicopters to fight to wildfires in the state.

The funds appropriated from the Texas legislature will go toward acquiring up to four UH-60 Blackhawk helicopters and developing their autonomous configuration, as well as to facilities, tools and equipment for research, testing and integration of firefighting capabilities over the next two years, according to a release from Texas A&M.

The BCDC was also selected to work with the Defense Advanced Research Projects Agency (DARPA) on its Aircrew Labor In-cockpit Automation System (ALIAS), which works to reduce risks for pilots and aircraft in high-risk missions.

"Working together with Texas, we have an opportunity to use autonomous helicopters to completely change the conversation around wildfires from containing them to extinguishing them,” Stuart Young, DARPA program manager for ALIAS, said in a release from DARPA.

The BCDC program will incorporate DARPA's automation toolkit, known as MATRIX, which has already demonstrated fully autonomous flight capabilities on approximately 20 aircraft platforms. MATRIX, which was developed by California-based Sikorsky Aircraft, was previously tested in proof-of-concept demonstrations of autonomous fire suppression in California and Connecticut earlier this year, according to DARPA.

“I am proud we are working with DARPA in a manner that will benefit Texas, the Department of Defense, and commercial industry,” retired Maj. Gen. Tim Green, director of the BCDC, said in the release. “Wildland firefighting will be the first mission application fully developed to take advantage of over a decade of work by DARPA on its Aircrew Labor In-cockpit Automation System (ALIAS).”

The BDC will test fully automated and semi-automated ALIAS-equipped aircraft on highly complex firefighting tasks. The complex will also work with Texas A&M University–Corpus Christi’s Autonomy Research Institute, the Texas Division of Emergency Management, the Texas A&M Engineering Extension Service, the Texas A&M Forest Service and the Texas A&M Engineering Experiment Station on the project.

John Diem, director of the innovation proving grounds at BCDC, will serve as principal investigator for the project.

“Advancing system capabilities through the last stages of technology maturation, operational testing, and concept development is always hugely exciting and rewarding,” Diem added in the release. “The best part of my career has been seeing systems I tested move into the hands of warfighters. Now, I’m proud to help ensure ALIAS is safe and effective in protecting life and property – and we will do that through realistic and challenging testing.”

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo via Getty Images

Houston semiconductor researchers join DARPA-funded Texas team

teaming up

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

------

This article originally ran on EnergyCapital.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with DARPA. Screenshot via Venus Aerospace

Houston space tech startup reports milestone achievement in partnership with federal agency

taking flight

A Houston tech company working on an engine to enable hypersonic flights has reported its latest milestone.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with Defense Advanced Research Projects Agency, or DARPA.

The RDRE engine Venus is working on is uniquely designed and a first in the field. It has an additional 15 percent efficiency over traditional rocket engines.

"As we continue to push towards our ultimate mission of high-speed global flight, this is an important technical milestone for having a flight-ready engine," Andrew Duggleby, CTO and co-founder of Venus Aerospace, says in the news release. "I'm incredibly proud of our team as they continue to push forward on this world-changing technology."

The test results are a big win, as the RDRE had previously only been tested in a short-duration capacity. DARPA is just one of several U.S. Government agencies that has contracts with Venus.

"The successful test is a testament to our team's dedication and expertise. We're building something special here at Venus, in large part because we have the right people and the right partners," Sassie Duggleby, CEO and co-founder of Venus Aerospace, adds. "I can't say enough about our collaboration with DARPA and the role they played in helping us make this leap forward."

Last summer, Venus added a new investor to its cap table. Andrew Duggleby founded Venus Aerospace with his wife and CEO Sassie in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round. Sassie joined the Houston Innovators Podcast a year ago to explain her company's mission of "home for dinner."

DARPA Partnership Long-Duration Testwww.youtube.com

Rice has developed a COVID diagnostic test that uses a cell phone. Photo courtesy of Rice University

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.

Texas booms as No. 3 best state to start a business right now

Innovation Starts Here

High employment growth and advantageous entrepreneurship rates have led Texas into a triumphant No. 3 spot in WalletHub's ranking of "Best and Worst States to Start a Business" for 2026.

Texas bounced back into the No. 3 spot nationally for the first time since 2023. After dropping into 8th place in 2024, the state hustled into No. 4 last year.

Ever year, WalletHub compares all 50 states based on their business environment, costs, and access to financial resources to determine the best places for starting a business. The study analyzes 25 relevant metrics to determine the rankings, such as labor costs, office space affordability, financial accessibility, the number of startups per capita, and more.

When about half of all new businesses don't last more than five years, finding the right environment for a startup is vital for long-term success, the report says.

Here's how Texas ranked across the three main categories in the study:

  • No. 1 – Business environment
  • No. 11 – Access to resources
  • No. 34 – Business costs

The state boasts the 10th highest entrepreneurship rates nationwide, and it has the 11th-highest share of fast-growing firms. WalletHub also noted that more than half (53 percent) of all Texas businesses are located in "strong clusters," which suggests they are more likely to be successful long-term.

"Clusters are interconnected businesses that specialize in the same field, and 'strong clusters' are ones that are in the top 25 percent of all regions for their particular specialization," the report said. "If businesses fit into one of these clusters, they will have an easier time getting the materials they need, and can tap into an existing customer base. To some degree, it might mean more competition, though."

Texas business owners should also keep their eye on Houston, which was recently ranked the 7th best U.S. city for starting a new business, and it was dubbed one of the top-10 tech hubs in North America. Workers in Texas are the "third-most engaged" in the country, the study added, a promising attribute for employers searching for the right place to begin their next business venture.

"Business owners in Texas benefit from favorable conditions, as the state has the third-highest growth in working-age population and the third-highest employment growth in the country, too," the report said.

The top 10 best states for starting a business in 2026 are:

  • No. 1 – Florida
  • No. 2 – Utah
  • No. 3 – Texas
  • No. 4 – Oklahoma
  • No. 5 – Idaho
  • No. 6 – Mississippi
  • No. 7 – Georgia
  • No. 8 – Indiana
  • No. 9 – Nevada
  • No. 10 – California
---

This article originally appeared on CultureMap.com.