Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo via Getty Images

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

------

This article originally ran on EnergyCapital.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with DARPA. Screenshot via Venus Aerospace

Houston space tech startup reports milestone achievement in partnership with federal agency

taking flight

A Houston tech company working on an engine to enable hypersonic flights has reported its latest milestone.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with Defense Advanced Research Projects Agency, or DARPA.

The RDRE engine Venus is working on is uniquely designed and a first in the field. It has an additional 15 percent efficiency over traditional rocket engines.

"As we continue to push towards our ultimate mission of high-speed global flight, this is an important technical milestone for having a flight-ready engine," Andrew Duggleby, CTO and co-founder of Venus Aerospace, says in the news release. "I'm incredibly proud of our team as they continue to push forward on this world-changing technology."

The test results are a big win, as the RDRE had previously only been tested in a short-duration capacity. DARPA is just one of several U.S. Government agencies that has contracts with Venus.

"The successful test is a testament to our team's dedication and expertise. We're building something special here at Venus, in large part because we have the right people and the right partners," Sassie Duggleby, CEO and co-founder of Venus Aerospace, adds. "I can't say enough about our collaboration with DARPA and the role they played in helping us make this leap forward."

Last summer, Venus added a new investor to its cap table. Andrew Duggleby founded Venus Aerospace with his wife and CEO Sassie in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round. Sassie joined the Houston Innovators Podcast a year ago to explain her company's mission of "home for dinner."

DARPA Partnership Long-Duration Testwww.youtube.com

Rice has developed a COVID diagnostic test that uses a cell phone. Photo courtesy of Rice University

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston VC funding surged in Q1 2025 to highest level in years, report says

by the numbers

First-quarter funding for Houston-area startups just hit its highest level since 2022, according to the latest PitchBook-NVCA Venture Monitor. But fundraising in subsequent quarters might not be as robust thanks to ongoing economic turmoil, the report warns.

In the first quarter of 2025, Houston-area startups raised $544.2 million in venture capital from investors, PitchBook-NVCA data shows. That compares with $263.5 million in Q1 2024 and $344.5 million in Q1 2023. For the first quarter of 2022, local startups nabbed $745.5 million in venture capital.

The Houston-area total for first-quarter VC funding this year fell well short of the sum for the Austin area (more than $3.3 billion) and Dallas-Fort Worth ($696.8 million), according to PitchBook-NVCA data.

While first-quarter 2025 funding for Houston-area startups got a boost, the number of VC deals declined versus the first quarters of 2024, 2023 and 2022. The PitchBook-NVCA Monitor reported 37 local VC deals in this year’s first quarter, compared with 45 during the same period in 2024, 53 in 2023, and 57 in 2022.

The PitchBook-NVCA report indicates fundraising figures for the Houston area, the Austin area, Dallas-Fort Worth and other markets might shrink in upcoming quarters.

“Should the latest iteration of tariffs stand, we expect significant pressure on fundraising and dealmaking in the near term as investors sit on the sidelines and wait for signs of market stabilization,” the report says.

Due to new trade tariffs and policy shifts, the chances of an upcoming rebound in the VC market have likely faded, says Nizar Tarhuni, executive vice president of research and market intelligence at PitchBook.

“These impacts amplify economic uncertainty and could further disrupt the private markets by complicating investment decisions, supply chains, exit windows, and portfolio strategies,” Tarhuni says. “While this may eventually lead to new domestic investment and create opportunities, the overall environment is facing volatility, hesitation, and structural change.”

Expert: Texas is building a cybersecurity wall — but it needs more bricklayers

Guest Column

Texas has always been a state that thinks in terms of scale. Big energy, big ambitions and now, big action in cybersecurity.

With the creation of the Texas Cyber Command under the Department of Information Resources, the state is recognizing what many of us in the industry have long understood: cybersecurity is not just an IT issue, it's a matter of public safety and economic resilience. Protecting municipal systems, schools, and critical energy infrastructure from cyber threats is no longer optional. It is essential.

For these efforts to succeed, Texas must invest as much in people as it does in technology. Without a capable, well-trained workforce to carry out the mission, even the strongest cyber strategies will struggle to hold the line.

The scope of the threat

Cyberattacks are not theoretical. In the last year alone, several cities in Texas experienced major ransomware attacks. One incident in Fort Worth took down core city systems, affecting everything from email access to permitting operations. The ripple effects were significant.

The energy sector is also under constant pressure. As a cornerstone of both the Texas and national economy, the it is a high-value target. Hackers are probing systems that manage oil, gas, and renewable energy infrastructure, looking for weaknesses that could be exploited to steal data or disrupt operations.

Texas has responded by centralizing its cyber incident response capabilities. The Texas Cyber Command is a smart step forward. It brings coordination and focus to an increasingly complex landscape. But its effectiveness will depend entirely on the professionals tasked with doing the work. And that’s where the challenge lies.

The workforce gap

Across the U.S., there are an estimated 400,000 unfilled cybersecurity positions. In Texas, more than 40,000 roles remain vacant, according to CyberSeek. These are not just numbers in a report. They represent a growing vulnerability with gaps in frontline defenses against real and persistent threats.

We cannot afford to rely solely on traditional pathways to fill this gap. Four-year degree programs are important, but they are not designed to scale fast enough or flexibly enough to meet today’s needs. Instead, we need to broaden our view of what a cybersecurity talent pipeline looks like and who it includes.

There needs to be an expanded focus on practical, skills-based training that takes high-aptitude individuals, including those from non-traditional backgrounds, and prepares them for success in cybersecurity careers through rigorous hands-on training that reflects the demands of real-world cyber roles. With the right structure and support, people from all walks of life are already proving they can become capable defenders of our digital infrastructure.

The same entrepreneurial spirit that drives innovation in other sectors can be applied to cybersecurity workforce development. We don’t have to wait years to grow the next generation of defenders. We can do it now, with the right focus and investment.

Texas has taken a critical first step by creating the Cyber Command, but if we want to build lasting resilience, we need to address the workforce bottleneck head-on. Cybersecurity needs more than tech…it needs talent.

---

Dean Gefen is theCEO, NukuDo, a San Antonio-based cybersecurity workforce development and staffing company.

Rice Business Plan Competition doles out $2M to 2025 student teams

big winners

Celebrating its 25th year, the Rice Alliance for Technology and Entrepreneurship hosted the celebrated Rice Business Plan Competition this month, doling out more than $2 million in investment and cash prizes to the top-performing teams.

“For 25 years, the Rice Business Plan Competition has helped shape how Rice Business shows up in the world by creating a platform where student-entrepreneurs can tackle some of the most complex challenges of our time in energy, in health care, in technology and beyond,” Peter Rodriguez, dean of Rice Business, the presenting sponsor of the event, said in a news release. “If we’re serious about changing the world — and I believe we are — then it’s our responsibility to open doors for students everywhere to imagine bold solutions and build what comes next.”

Over the course of the three-day event, the 42 startups competing this year from colleges or universities around the world presented their plans before more than 300 angel, venture capital, and corporate investors. The teams were selected from the event’s largest applicant pool to date and represented 34 universities across four countries, according to Rice. Winners were announced at the company showcase and awards ceremony April 12 in downtown Houston.

Seven finalists were selected, though each team left the competition with some form of funding, according to Rice. The University of Michigan's Intero Biosystems was the star of the show, bringing home both the top-place finish and the largest total investment. Rice's own Pattern Materials also had a strong showing, placing fourth in the pitch competition and also earning the fourth-highest investment total.

Here are the teams that won big in 2025. See a full list of winners and prizes here.

Intero Biosystems, University of Michigan - $902,000

The team finished in first place for its GastroScreen, the first stem cell-driven human “mini gut” that is ideal for organ function testing before testing on humans, and also claimed the largest total investments among the competition.

  • $150,000 Goose Capital Investment Grand Prize
  • $250,000 Goose Capital Investment Prize
  • $200,000 The OWL Investment Prize
  • $100,000 Houston Angel Network Investment Prize
  • $100,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize
  • $100,000 Investment Prize from Nancy Chang
  • $1,000 Mercury Elevator Pitch Competition - Overall Winner
  • $1,000 Anbarci Family Company Showcase Prize
  • TMC Innovation Healthcare Accelerator Bootcamp Invitation Prize

MabLab, Harvard University – $301,500

The team placed second for its rapid test capable of detecting multiple adulterants in laced drugs and spiked drinks.

  • $100,000 Investment Prize, sponsored by David Anderson, Anderson Family Fund, Jon Finger and Finger Interests
  • $100,000 The Indus Entrepreneurs (TiE) Texas Angels Investment Prize
  • $25,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize
  • $50,000 Valhalla Investment Network Investment Prize
  • $25,000 The Eagles Investor Investment Prize
  • $500 Mercury Elevator Pitch Competition - Life Science*
  • $1,000 Anbarci Family Company Showcase Prize

re.solution, RWTH Aachen University — $76,500

The team placed third for its water-based technology that recycles polyesters without generating salt waste, making textile recycling viable.

  • $50,000 Investment Prize, sponsored by David Anderson, Anderson Family Fund, Jon Finger and Finger Interests
  • $25,000 Pearland EDC Spirit of Entrepreneurship Cash Prize
  • $500 Mercury Elevator Pitch Competition - Energy/Cleantech
  • $1,000 Anbarci Family Company Showcase Prize

Pattern Materials, Rice University – $134,500

The Houston-based team placed fourth for its laser-induced graphene technology that can be rapidly performed, enabling low-cost, scalable production of the material.

  • $5,000 prize, sponsored by Norton Rose Fulbright
  • $50,000 Valhalla Investment Network Investment Prize
  • $25,000 Pearland EDC Spirit of Entrepreneurship Cash Prize
  • $25,000 New Climate Ventures Sustainable Investment Prize
  • $25,000 Amentum and WRX Companies Rising Stars Space Technology and Commercial Aerospace Cash Prize
  • $500 Mercury Elevator Pitch Competition - Hard Tech
  • $1,000 Anbarci Family Company Showcase Prize
  • $3,000 Venture Builder Innovation Prizes

Xatoms, Western University and University of Toronto — $30,000

The team placed fifth for its AI- and quantum-driven platform for discovering solar-activated semiconductor materials.

  • $5,000 prize, sponsored by EY
  • $25,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize

Mito Robotics, Carnegie Mellon University— $5,000

The team placed sixth for its automated manual cell culture with AI-powered robotic scientists for life science research

  • $5,000 prize, sponsored by Chevron Technology Ventures

FarmSmart.ai, LSU – $106,000

The team placed seventh for its AI—driven assistant that synthesizes vast agricultural research into actionable, tailored intelligence, but earned the fifth-most investments among the group.

  • $5,000 prize, sponsored by Shell Ventures
  • $100,000 The OWL Investment Prize
  • $1,000 Anbarci Family Company Showcase Prize
  • Edward H. Molter Memorial Prizes for Wildcard Round - 1st place - Advance to Finals


Other significant awards

GreenLIB Materials, University of Ottawa – $152,000

  • $150,000 Goose Capital Investment Prize
  • $2,000 Venture Builder Innovation Prizes

Microvitality, Tufts University – $26,500

  • $25,000 Southwest National Pediatric Device Consortium Pediatric Device Cash Prize
  • $1,500 Edward H. Molter Memorial Prizes for Wildcard Round - 3rd place overall in WC

Nanoborne, University of Texas at Austin - $25,000

  • $25,000 NOV Golden Ticket to Supernova Accelerator and Cash Prize

Last year, the Rice Business Plan Competition facilitated over $1.5 million in investment and cash prizes. MesaQuantum from Harvard University landed the highest total investment last year, although it was not named a finalist. Protein Pints from Michigan State University won the pitch competition.

According to Rice, 910 startups have raised more than $6.9 billion in capital through the competition over the last 25 years.