Texas A&M will work with DARPA to test fully automated and semi-automated helicopters to combat wildfires in the state. Image by Colie Wertz. Courtesy DARPA.

Texas A&M University's George H.W. Bush Combat Development Complex will receive $59.8 million to develop a way for autonomous helicopters to fight to wildfires in the state.

The funds appropriated from the Texas legislature will go toward acquiring up to four UH-60 Blackhawk helicopters and developing their autonomous configuration, as well as to facilities, tools and equipment for research, testing and integration of firefighting capabilities over the next two years, according to a release from Texas A&M.

The BCDC was also selected to work with the Defense Advanced Research Projects Agency (DARPA) on its Aircrew Labor In-cockpit Automation System (ALIAS), which works to reduce risks for pilots and aircraft in high-risk missions.

"Working together with Texas, we have an opportunity to use autonomous helicopters to completely change the conversation around wildfires from containing them to extinguishing them,” Stuart Young, DARPA program manager for ALIAS, said in a release from DARPA.

The BCDC program will incorporate DARPA's automation toolkit, known as MATRIX, which has already demonstrated fully autonomous flight capabilities on approximately 20 aircraft platforms. MATRIX, which was developed by California-based Sikorsky Aircraft, was previously tested in proof-of-concept demonstrations of autonomous fire suppression in California and Connecticut earlier this year, according to DARPA.

“I am proud we are working with DARPA in a manner that will benefit Texas, the Department of Defense, and commercial industry,” retired Maj. Gen. Tim Green, director of the BCDC, said in the release. “Wildland firefighting will be the first mission application fully developed to take advantage of over a decade of work by DARPA on its Aircrew Labor In-cockpit Automation System (ALIAS).”

The BDC will test fully automated and semi-automated ALIAS-equipped aircraft on highly complex firefighting tasks. The complex will also work with Texas A&M University–Corpus Christi’s Autonomy Research Institute, the Texas Division of Emergency Management, the Texas A&M Engineering Extension Service, the Texas A&M Forest Service and the Texas A&M Engineering Experiment Station on the project.

John Diem, director of the innovation proving grounds at BCDC, will serve as principal investigator for the project.

“Advancing system capabilities through the last stages of technology maturation, operational testing, and concept development is always hugely exciting and rewarding,” Diem added in the release. “The best part of my career has been seeing systems I tested move into the hands of warfighters. Now, I’m proud to help ensure ALIAS is safe and effective in protecting life and property – and we will do that through realistic and challenging testing.”

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo via Getty Images

Houston semiconductor researchers join DARPA-funded Texas team

teaming up

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

------

This article originally ran on EnergyCapital.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with DARPA. Screenshot via Venus Aerospace

Houston space tech startup reports milestone achievement in partnership with federal agency

taking flight

A Houston tech company working on an engine to enable hypersonic flights has reported its latest milestone.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with Defense Advanced Research Projects Agency, or DARPA.

The RDRE engine Venus is working on is uniquely designed and a first in the field. It has an additional 15 percent efficiency over traditional rocket engines.

"As we continue to push towards our ultimate mission of high-speed global flight, this is an important technical milestone for having a flight-ready engine," Andrew Duggleby, CTO and co-founder of Venus Aerospace, says in the news release. "I'm incredibly proud of our team as they continue to push forward on this world-changing technology."

The test results are a big win, as the RDRE had previously only been tested in a short-duration capacity. DARPA is just one of several U.S. Government agencies that has contracts with Venus.

"The successful test is a testament to our team's dedication and expertise. We're building something special here at Venus, in large part because we have the right people and the right partners," Sassie Duggleby, CEO and co-founder of Venus Aerospace, adds. "I can't say enough about our collaboration with DARPA and the role they played in helping us make this leap forward."

Last summer, Venus added a new investor to its cap table. Andrew Duggleby founded Venus Aerospace with his wife and CEO Sassie in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round. Sassie joined the Houston Innovators Podcast a year ago to explain her company's mission of "home for dinner."

DARPA Partnership Long-Duration Testwww.youtube.com

Rice has developed a COVID diagnostic test that uses a cell phone. Photo courtesy of Rice University

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 UH projects named finalists for $50M fund to shape future of Gulf Coast

Looking to the Future

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall. Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

Kids, kicks and connectivity: Xfinity makes soccer a shared experience

The Beautiful Game

For soccer mom Lana Chase, weekends were a whirlwind of cleats, carpooling, and cheering from the sidelines. Now that her daughter Miah graduated high school in May, the Chase Family’s love for the game hasn't stopped. It's shifted to their living room, where Comcast’s new Xfinity streaming platform brings the global game home.

“We’re a soccer family through and through,” says Chase. “Miah played soccer from about age 8 until 16, and we love the World Cup! Xfinity makes it easy for all of us to watch what we love together.”

One platform, every goal

Xfinity's new World Soccer Ticket package eliminates the chaos of juggling apps, subscriptions, or subpar streams. Families can now enjoy more than 1,500 matches from across the globe.

With parental controls, age-appropriate content, and smart recommendations, Xfinity turns soccer into family-friendly entertainment. Whether it’s a weekend watch party or a quiet school night, the platform adapts to every household’s rhythm.

“Figuring out where to watch your favorite team or match is often a painful game of chance. Now, with World Soccer Ticket, there’s no better way to watch the beautiful game than with Xfinity,” says Jon Gieselman, chief growth officer for Comcast's connectivity & platforms. “It’s easy, we did the work for our customers and pulled together the most coveted leagues and tournaments – from Premier League, LALIGA and Champions League to the World Cup – and put them in one place. We added some magic to the experience, with innovations like Multiview, 4K, and Sports Zone all easily accessible with one simple click or voice command.”

World Cup in Houston

With the 2026 World Cup on the horizon, the timing couldn't have been better. The world tournament will be the largest Spanish-language coverage ever offered by Telemundo, powered by Comcast NBCUniversal's technology, storytelling, and scale.

Telemundo and Peacock hold the exclusive Spanish language rights to "el Mundial," including all 104 matches streaming live on Peacock, with 92 matches airing on Telemundo and 12 on Universo. Live crews will cover every event in all 16 host cities, including Houston.

Xfinity customers will have access to pregame, halftime, and postgame coverage with unprecedented immersive experiences. The 2026 World Cup will be the most exciting event of the summer.

"We know other soccer families who watch matches with their little brothers and sisters. It’s not just a game, it’s family time. It's an even bigger deal with the tournament being just down the road in Houston next year,” Chase adds.

Comcast’s AI-powered platform personalizes the viewing experience, recommending matches and highlights based on each family member’s preferences.

World Soccer Ticket is available for an all-in monthly price of $85. It includes nearly 60 broadcast, cable news, and English- and Spanish-language sports channels, and a subscription to Peacock Premium so customers can enjoy a huge collection of movies, shows, news, and other live sports alongside all their favorite soccer programming.

Subscribe to World Soccer Ticket here.

Houston digital health platform Koda closes $7 million funding round

fresh funding

Houston-based digital advance care planning company Koda Health has closed an oversubscribed $7 million series A funding round.

The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success, according to a news release.

“This funding allows us to create more goals-of-care product lines, expand our national footprint, and bring goal-concordant care to millions more patients and families," Tatiana Fofanova, co-founder and CEO of Koda Health, said in the release.

Koda Health, which was born out of the TMC's Biodesign Fellowship in 2020, has seen major growth this year and said it now supports more than 1 million patients nationwide. The company integrated its end-of-life care planning platform with Dallas-based Guidehealth in April and with Epic Systems in July. Users of Epic's popular Mychart system and Guidehealth's clinically integrated networks can now document and share their care preferences, goals and advance directives for health systems using Koda Health's platform. It also has partnerships with Cigna, Privia and Memorial Hermann.

The company shared that the recent series A "marks a pivotal moment," as it has secured investments from influential leaders in the healthcare and venture capital space.

“Koda is the only company combining technology and service to deliver comprehensive solutions that help health plans, providers, and health systems scale goals-aligned care. With satisfied customers expanding their partnerships and policy shifts reinforcing the need for patient-centered care that also contains costs, we couldn’t be more excited to support the Koda team and their vision,” Sean Glass, managing partner at Evidenced, said in the release.

According to the company, a recent peer-reviewed study with Houston Methodist ACO showed that the platform can have a major impact on palliative care results and costs. The findings showed:

  • 79 percent reduction in terminal hospitalizations
  • 20 percent decrease in inpatient length of stay
  • 51 percent increase in hospice use among decedents
  • Nearly $9,000 in average savings per patient

“Patients long for clarity, families deserve peace of mind, and providers demand ease of use,” Dr. Desh Mohan, chief medical officer of Koda Health, added in the release. “At Koda, we make it possible to deliver all three — transforming Advance Care Planning into a compassionate, ongoing dialogue that honors patients and supports families every step of the way.”

Koda Health also closed an oversubscribed seed round for an undisclosed amount last year, with investments from AARP, Memorial Hermann Health System and the Texas Medical Center Venture Fund. Read more here.