Let's talk about dark data — what it means and how to navigate it. Graphic by Miguel Tovar/University of Houston

Is it necessary to share ALL your data? Is transparency a good thing or does it make researchers “vulnerable,” as author Nathan Schneider suggests in the Chronicle of Higher Education article, “Why Researchers Shouldn’t Share All Their Data.”

Dark Data Defined

Dark data is defined as the universe of information an organization collects, processes and stores – oftentimes for compliance reasons. Dark data never makes it to the official publication part of the project. According to the Gartner Glossary, “storing and securing data typically incurs more expense (and sometimes greater risk) than value.”

This topic is reminiscent of the file drawer effect, a phenomenon which reflects the influence of the results of a study on whether or not the study is published. Negative results can be just as important as hypotheses that are proven.

Publication bias and the need to only publish positive research that supports the PI’s hypothesis, it can be argued, is not good science. According to an article in the Indian Journal of Anaesthesia, authors Priscilla Joys Nagarajan, et al., wrote: “It is speculated that every significant result in the published world has 19 non-significant counterparts in file drawers.” That’s one definition of dark data.

Total Transparency

But what to do with all your excess information that did not make it to publication, most likely because of various constraints? Should everything, meaning every little tidbit, be readily available to the research community?

Schneider doesn’t think it should be. In his article, he writes that he hides some findings in a paper notebook or behind a password, and he keeps interviews and transcripts offline altogether to protect his sources.

Open-source

Open-source software communities tend to regard total transparency as inherently good. What are the advantages of total transparency? You may make connections between projects that you wouldn’t have otherwise. You can easily reproduce a peer’s experiment. You can even become more meticulous in your note-taking and experimental methods since you know it’s not private information. Similarly, journalists will recognize this thought pattern as the recent, popular call to engage in “open journalism.” Essentially, an author’s entire writing and editing process can be recorded, step by step.

TMI

This trend has led researchers to open-source programs like Jupyter and GitHub. Open-source programs detail every change that occurs along a project’s timeline. Is unorganized, excessive amounts of unpublishable data really what transparency means? Or does it confuse those looking for meaningful research that is meticulously curated?

The Big Idea

And what about the “vulnerability” claim? Sharing every edit and every new direction taken opens a scientist up to scoffers and harassment, even. Dark data in industry even involves publishing salaries, which can feel unfair to underrepresented, marginalized populations.

In Model View Culture, Ellen Marie Dash wrote: “Let’s give safety and consent the absolute highest priority, with openness and transparency prioritized explicitly below those. This means digging deep, properly articulating in detail what problems you are trying to solve with openness and transparency, and handling them individually or in smaller groups.”

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.