A team from the University of Houston received a grant to continue its work on using AI and digital twin technology to better evaluate bridges in Texas. Photo via uh.edu

A University of Houston professor has received a grant from the Texas Department of Transportation (TxDOT) to improve the efficiency and effectiveness of how bridges are inspected in the state.

The $505,286 grant will support the project of Vedhus Hoskere, assistant professor in the Civil and Environmental Engineering Department, over three years. The project, “Development of Digital Twins for Texas Bridges,” will look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

“To put this data in context, we create a 3D digital representation of these bridges, called digital twins,” Hoskere said in a statement. “Then, we use artificial intelligence methods to help us find and quantify problems to be concerned about. We’re particularly interested in any structural problems that we can identify - these digital twins help us monitor changes over time and keep a close eye on the bridge. The digital twins can be tremendously useful for the planning and management of our aging bridge infrastructure so that limited taxpayer resources are properly utilized.”

The project began in September and will continue through August 2026. Hoskere is joined on the project by Craig Glennie, the Hugh Roy and Lillie Cranz Cullen Distinguished Chair at Cullen College and director of the National Center for Airborne Laser Mapping, as the project’s co-principal investigator.

According to Hoskere, the project will have implications for Texas's 55,000 bridges (more than twice as many as any other state in the country), which need to be inspected every two years.

Outside of Texas, Hoskere says the project will have international impact on digital twin research. Hoskere chairs a sub-task group of the International Association for Bridge and Structural Engineering (IABSE).

“Our international efforts align closely with this project’s goals and the insights gained globally will enhance our work in Texas while our research at UH contributes to advancing bridge digitization worldwide,” he said. “We have been researching developing digital twins for inspections and management of various infrastructure assets over the past 8 years. This project provides us an opportunity to leverage our expertise to help TxDOT achieve their goals while also advancing the science and practice of better developing these digital twins.”

Last year another UH team earned a $750,000 grant from the National Science Foundation for a practical, Texas-focused project that uses AI. The team was backed by the NSF's Convergence Accelerator for its project to help food-insecure Texans and eliminate inefficiencies within the food charity system.

UH Professor Vedhus Hoskere received a three-year, $505,286 grant from TxDOT for a bridge digitization project. Photo via uh.edu

The $63.5 million contract aims to support UH in developing analytical modeling and simulation platforms that help the U.S. Army make timely and effective decisions. Photo via uhsystem.edu

University of Houston lands $63.5M contract with DOD to develop tech for the 'future battlefield'

ready to innovate

The University of Houston was recently awarded its largest grant in history—this time, from the U.S. Department of Defense.

The $63.5 million contract aims to support UH in developing analytical modeling and simulation platforms that help the U.S. Army make timely and effective decisions, according to a release from UH.

Craig Glennie, professor of civil and environmental engineering and director of engineering defense research initiatives at the UH Cullen College of Engineering, who is leading the project, says the team's work will focus on creating tools for the time period before conflict begins.

“We are not looking at what happens once bullets start flying. We are looking at what happens during the competition and crisis phases, the buildup and the posturing and the projection of forces before you actually get to the point of armed conflict,” he says in a statement. “The Army needs tools to understand how they can effectively position themselves and project their force towards the adversary in such a manner that they can avoid armed conflict, or if that is not possible, be prepared for the onset of armed conflict.”

The team, which also includes members from the University of Massachusetts Amherst, New Mexico State University and other organizations, will work closely with the U.S. Army Combat Capabilities Development Command Analysis Center, known as DAC. They've been commissioned to help build realistic modeling, analysis and simulation tools that the Army can use in the "future battlefield."

DAC has named several high priority issues for the team including quantum technology, artificial intelligence, and machine learning.

“For example, we will look at the electromagnetic spectrum, at owning the airspace, and projecting that we have the radio frequency technology that is capable of jamming a neighbor’s signals," Glennie adds.

UH president Renu Khator says the university is honored to revive the contract.

“We understand the significance of this project in enhancing the Army’s decision-making capabilities, and we are proud to contribute to our nation’s security and strategic competitiveness," she said in a statement. "We look forward to the remarkable contributions that will emerge from this collaboration, strengthening the University of Houston’s commitment to driving innovation that matters.”

UH has inked a number of grants and contracts in recent months that are pushing innovative initiatives forward at the university.

Last month, UH received a $100,000 grant from the Baker Hughes Foundation to go toward workforce development programs, and environmental justice research at its Energy Transition Institute. The ETI was launched last year through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc.

And earlier this month, Houston-based The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to a new initiative led by Jeffrey Rimer, UH's Abraham E. Dukler Professor of Chemical Engineering. The grant launched the Welch Center for Advanced Bioactive Materials Crystallization, which will build upon Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Craig Glennie, professor of civil and environmental engineering and director of engineering defense research initiatives at the UH Cullen College of Engineering, is leading the project. Photo via uh.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”