A team from the University of Houston received a grant to continue its work on using AI and digital twin technology to better evaluate bridges in Texas. Photo via uh.edu

A University of Houston professor has received a grant from the Texas Department of Transportation (TxDOT) to improve the efficiency and effectiveness of how bridges are inspected in the state.

The $505,286 grant will support the project of Vedhus Hoskere, assistant professor in the Civil and Environmental Engineering Department, over three years. The project, “Development of Digital Twins for Texas Bridges,” will look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

“To put this data in context, we create a 3D digital representation of these bridges, called digital twins,” Hoskere said in a statement. “Then, we use artificial intelligence methods to help us find and quantify problems to be concerned about. We’re particularly interested in any structural problems that we can identify - these digital twins help us monitor changes over time and keep a close eye on the bridge. The digital twins can be tremendously useful for the planning and management of our aging bridge infrastructure so that limited taxpayer resources are properly utilized.”

The project began in September and will continue through August 2026. Hoskere is joined on the project by Craig Glennie, the Hugh Roy and Lillie Cranz Cullen Distinguished Chair at Cullen College and director of the National Center for Airborne Laser Mapping, as the project’s co-principal investigator.

According to Hoskere, the project will have implications for Texas's 55,000 bridges (more than twice as many as any other state in the country), which need to be inspected every two years.

Outside of Texas, Hoskere says the project will have international impact on digital twin research. Hoskere chairs a sub-task group of the International Association for Bridge and Structural Engineering (IABSE).

“Our international efforts align closely with this project’s goals and the insights gained globally will enhance our work in Texas while our research at UH contributes to advancing bridge digitization worldwide,” he said. “We have been researching developing digital twins for inspections and management of various infrastructure assets over the past 8 years. This project provides us an opportunity to leverage our expertise to help TxDOT achieve their goals while also advancing the science and practice of better developing these digital twins.”

Last year another UH team earned a $750,000 grant from the National Science Foundation for a practical, Texas-focused project that uses AI. The team was backed by the NSF's Convergence Accelerator for its project to help food-insecure Texans and eliminate inefficiencies within the food charity system.

UH Professor Vedhus Hoskere received a three-year, $505,286 grant from TxDOT for a bridge digitization project. Photo via uh.edu

The $63.5 million contract aims to support UH in developing analytical modeling and simulation platforms that help the U.S. Army make timely and effective decisions. Photo via uhsystem.edu

University of Houston lands $63.5M contract with DOD to develop tech for the 'future battlefield'

ready to innovate

The University of Houston was recently awarded its largest grant in history—this time, from the U.S. Department of Defense.

The $63.5 million contract aims to support UH in developing analytical modeling and simulation platforms that help the U.S. Army make timely and effective decisions, according to a release from UH.

Craig Glennie, professor of civil and environmental engineering and director of engineering defense research initiatives at the UH Cullen College of Engineering, who is leading the project, says the team's work will focus on creating tools for the time period before conflict begins.

“We are not looking at what happens once bullets start flying. We are looking at what happens during the competition and crisis phases, the buildup and the posturing and the projection of forces before you actually get to the point of armed conflict,” he says in a statement. “The Army needs tools to understand how they can effectively position themselves and project their force towards the adversary in such a manner that they can avoid armed conflict, or if that is not possible, be prepared for the onset of armed conflict.”

The team, which also includes members from the University of Massachusetts Amherst, New Mexico State University and other organizations, will work closely with the U.S. Army Combat Capabilities Development Command Analysis Center, known as DAC. They've been commissioned to help build realistic modeling, analysis and simulation tools that the Army can use in the "future battlefield."

DAC has named several high priority issues for the team including quantum technology, artificial intelligence, and machine learning.

“For example, we will look at the electromagnetic spectrum, at owning the airspace, and projecting that we have the radio frequency technology that is capable of jamming a neighbor’s signals," Glennie adds.

UH president Renu Khator says the university is honored to revive the contract.

“We understand the significance of this project in enhancing the Army’s decision-making capabilities, and we are proud to contribute to our nation’s security and strategic competitiveness," she said in a statement. "We look forward to the remarkable contributions that will emerge from this collaboration, strengthening the University of Houston’s commitment to driving innovation that matters.”

UH has inked a number of grants and contracts in recent months that are pushing innovative initiatives forward at the university.

Last month, UH received a $100,000 grant from the Baker Hughes Foundation to go toward workforce development programs, and environmental justice research at its Energy Transition Institute. The ETI was launched last year through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc.

And earlier this month, Houston-based The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to a new initiative led by Jeffrey Rimer, UH's Abraham E. Dukler Professor of Chemical Engineering. The grant launched the Welch Center for Advanced Bioactive Materials Crystallization, which will build upon Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Craig Glennie, professor of civil and environmental engineering and director of engineering defense research initiatives at the UH Cullen College of Engineering, is leading the project. Photo via uh.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.