Rice University identified 15 more pandemic-related research projects to receive support from a new research fund. Getty Images

Researchers at a Houston institution have been rewarded for their work that focuses on COVID-19 and how it's affected various aspects of life.

Rice University has named its two more rounds of recipients of its COVID-19 Research Fund — an initiative created to support projects that are innovating solutions and services amid the COVID-19 crisis. In April, the COVID-19 Research Fund Oversight and Review Committee — led by engineering professor and special adviser to the provost, Marcia O'Malley — selected four projects led by Rice faculty members across industries from biomedicine to humanities that will receive the first round of funds.

The committee named another round of recipients in May and the third and final round this month. Here are the projects from the last two rounds of grants:

  • Rapid point-of-care device to detect severe cases of COVID-19 by Kevin McHugh and Peter Lillehoj of Rice and Cassian Yee of the University of Texas MD Anderson Cancer Center.
  • A mobile phone-based blood serum test for COVID-19 antibodies by Lillehoj, Wen Hsiang Chen of Baylor College of Medicine and James Le Duc of Galveston National Laboratory. The mobile test would be faster and more precise.
  • A handbook addressing pandemic response initiatives for health officials by Kirsten Ostherr and Lan Li of Rice; Thomas Cole of the McGovern Medical School at the University of Texas Health Science Center, Houston; Robert Peckham of Hong Kong University; and Sanjoy Bhattacharya of York University.
  • A look at COVID-19's effect on vehicle travel and electric power generation and air quality by Daniel Cohan and Daniel Kowal of Rice. Using both on-the-ground and satellite data, the researchers will look at various air pollutants.
  • A study on Harris County residents' compliance to stay-at-home orders by Flavio Cunha, Patricia DeLucia, Fred Oswald, Ekim Cem Muyan and E. Susan Amirian of Rice. The researchers will survey residents — particularly low-socioeconomic populations.
  • A look at how pollution and economics affect each other turing a pandemic-caused crisis by Sylvia Dee, Ted Loch-Temzelides, Caroline Masiello and Mark Torres of Rice. Thanks to stay-at-home initiatives, the study can look at which economic sectors contribute the most to carbon emissions.
  • A study on long-term effects of COVID-19 on human development by Fred Oswald of Rice, Rodica Damian and Tingshu Liu of the University of Houston and Patrick Hill of Washington University. The project looks at the pandemic's affect on social contexts including occupational, educational, community, family, lifestyle, health and financial.
  • A predictive model of Houston's COVID-19 condition by Daniel Kowal, assistant professor of statistics, and Thomas Sun, a graduate student, at Rice. The project will compare Houston to locations that are similar and further along the disease incidence curve.
  • A survey of how stay-at-home orders affected low-income families by Amelyn Ng, Wortham Fellow at Rice Architecture, and Gabriel Vergara of One Architecture and Urbanism. he survey will focus on Houston's Greater Fifth Ward.
  • Research on antibodies for disease prevention by Laura Segatori, associate professor of bioengineering and of chemical and bimolecular engineering and biosciences, and Omid Veiseh, assistant professor of bioengineering, at Rice. The two scientists plan to engineer cell lines for the rapid development of clinically translatable neutralizing antibodies for infection control.
  • An analysis of working conditions amid the pandemic by Danielle King, assistant professor of psychological sciences at Rice. King will look into both employees who can no longer go to the workplace, like teachers, and those required to, like nurses, to see what resources are most effective.
  • An oxygen sensing device by Michael Wong, department chair and a professor of chemical and biomolecular engineering, and Rafael Verduzco, associate professor of chemical and biomolecular engineering, of Rice and John Graf of NASA. The team will continue working on a NASA-designed prototype ventilator for rapid deployment based on an off-the-shelf automotive oxygen sensor.
  • A study on social distancing for musicians by Ashok Veeraraghavan, Robert Yekovich and Ashutosh Sabharwal of Rice and John Mangum of the Houston Symphony. The project will look into airflow of wind instruments using high-speed imaging.
  • Looking into public health initiatives and their use in COVID-19 by Hulya Eraslan, Rossella Calvi, Dibya Deepta Mishra and Ritika Sethi of Rice. The team will look at election data with a goal is to understand the impact of political alignment across levels of government on the effectiveness of its response.
  • Research on optimizing nursing staff schedules by Andrew Schaefer, Illya Hicks and Joseph Huchette of Rice and Nicole Fontenot of Houston Methodist Hospital. Researchers will employ data and technology to improve forecasting demand for nursing staff.
Four COVID-19-focused research projects have been selected by Rice University to receive funding. Photo courtesy of Rice University

Houston university announces first recipients of coronavirus research funding

covid heroes

Rice University has named several Houston researchers as recipients of funding as a part of a new initiative to support projects that are innovating solutions and services amid the COVID-19 crisis.

The university's COVID-19 Research Fund Oversight and Review Committee — led by engineering professor and special adviser to the provost, Marcia O'Malley — selected a few projects led by Rice faculty members across industries from biomedicine to humanities that will receive the first round of funds. However, the application window is ongoing, according to a press release, and additional awards are to be expected.

Here were the first projects and researchers to be selected by the committee.

A low-cost diagnostic tool

Rice researchers Rebecca Richards-Kortum and Kathryn Kundrod of Rice University along with Kathleen Schmeler of the University of Texas MD Anderson Cancer Center have identified a way to create a COVID-19 diagnostic device that costs less than $5,000 and less than $2 per test. It would also take fewer than 30 minutes to diagnose.

The researchers are also working with USAID and industry partners on a plan to scale the test to five countries in Africa. In the future, the device would enable broader SARS-CoV-2 testing locally and in low- and middle-income countries.

Richards-Kortum is a professor of bioengineering and electrical and computer engineering and director of Rice 360˚. Kundrod is a graduate student in bioengineering. Schmeler is a professor in the department of gynecologic oncology and reproductive medicine at MD Anderson.

A protective rubber harness to be worn over a face mask 

Jacob Robinson and Caleb Kemere, associate professors at Rice, along with Sahil Kuldip of MD Anderson, have discovered a low-cost, easy-to-manufacture rubber harness to be worn over surgical or cloth masks in order seal the masks. The seal would better prevent small airborne particles from getting around the masks.

Robinson is in Rice's electrical and computer engineering and bioengineering departments, while Kemere specializes in electrical and computer engineering. Kuldip is an assistant professor of plastic surgery at MD Anderson.

Wastewater monitoring for coronavirus contamination 

Rice researchers Lauren Stadler, Katherine Ensor and Loren Hopkins are working with the Houston Health Department and Houston Water on a plan to collect wastewater samples from local treatment plants to monitor for the presence of COVID-19.

With most people asymptomatic or experience only mild symptoms of COVID-19, the researchers are looking into the virus's presence in wastewater in order to track community infection.

Stadler, an assistant professor of civil and environmental engineering, and Ensor, the Noah G. Harding Professor of Statistics, are working with Hopkins, who is a professor in practice of statistics and chief environmental science officer for the Houston Health Department.

The identification of safe and healthy voting procedures 

Five Rice researchers — Robert Stein, Philip Kortum, Claudia Ziegler Acemyan, Daniel Wallach and Elizabeth Vann — are looking into steps Harris County can take to ensure that in-person voting is safe and keeps participants healthy. Through surveys with citizens, the team will help election officials survey both voters and poll workers on their voting preferences and concerns.

The research team spans campus departments: Stein is the Lena Gohlman Fox Professor of Political Science, Kortum is an associate professor of psychological sciences, Acemyan is an adjunct assistant professor of psychological sciences, Wallach is a professor of computer science and of electrical and computer engineering, and Vann is the director of programs and partnerships at the Center for Civic Leadership

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.



Rice University launches  engineering-led brain science and health institute

brain research

Rice University has announced the creation of a new interdisciplinary center known as the Rice Brain Institute (RBI).

The new hub will aim to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders.

“The Rice Brain Institute reflects Rice’s strength in collaboration without boundaries,” Rachel Kimbro, dean of the School of Social Sciences, said in a news release. “Our researchers are not only advancing fundamental science but they’re also ensuring that knowledge reaches society in ways that promote human flourishing.”

RBI researchers will work in thematic clusters focusing on neurodegeneration, mental health, brain injury and neurodevelopment. The clusters will work toward goals such as significantly improving key brain health outcomes, reducing mortality and mental health disorders and improving quality of life for patients living with brain injuries and neurodevelopmental disorders, according to Rice.

The institute will focus on “engineering-driven innovation,” rather than traditional neuroscience, to design tools that can measure, model and modulate brain activity based around Rice’s expertise in soft robotics, neuroimaging, data science and artificial intelligence—making it unique among peer organizations, according to Rice.

Additionally, RBI will be structured around three collaborative Rice “pillars”:

  • The Neuroengineering Initiative, launched in 2018, brings together neuroscience, engineering, and related fields experts
  • The Neuroscience Initiative, a new initiative that brings together cell biologists, neurobiologists, biochemists, chemists and physicists to explore fundamental mechanisms of the brain and nervous system
  • The Brain and Society Initiative, also a new initiative, considers brain research within the broader social and policy landscape

Rice’s Neuroengineering Initiative has already garnered more than $78 million in research funding, according to Rice, and has established major partnerships, like the Rice-Houston Methodist Center for Neural Systems Restoration.

“Rice is uniquely equipped to bridge and connect scientific understanding of the brain and behavior sciences with the technologies and policies that shape our world,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, added in the news release. “By uniting faculty in neuroengineering, neuroscience and psychological sciences, this interdisciplinary hub embodies the kind of bold, nimble collaboration that allows Rice to turn discovery into societal impact to save lives and enhance human flourishing.”

The formation of the RBI coincides with recent support of the Dementia Prevention Research Institute of Texas (DPRIT), which landed voter approval earlier this week and aims to make Texas the center for dementia research via brain-health tech. According to the World Economic Forum, brain disorders and mental health disorders cost the global economy an estimated $5 trillion per year and could be as high as $16 trillion by 2030.

“Few areas of research have as direct and profound an impact on human well-being as brain health,” Rice President Reginald DesRoches added in the news release. “As rates of Alzheimer’s, dementia and other neurological diseases rise in our country and around the world, universities have a responsibility to lead the discovery of solutions that preserve memory, movement and quality of life. We all know someone who has been affected by a brain-related health issue, so this research is personal to all of us.”