Drs. Maria Elena Bottazzi and Peter Hotez at the Center for Vaccine Development. Photo courtesy of Texas Children's Hospital

With the U.S. logging its highest single-day total of new COVID-19 cases (441,278 infections) and some 281, 808, 270 cases documented worldwide, new treatments worldwide are in major demand — especially in emerging nations.

To that end, Texas Children’s Hospital and Baylor College of Medicine announced a new COVID vaccine ready to deploy in India and soon, other underserved countries.

Corbevax, which is dubbed “The World’s COVID-19 Vaccine,” utilizes a traditional recombinant protein-based technology that will enable production at large scales, per a press release. That means the inoculation will be widely accessible to inoculate the global population.

This new vaccine was developed at Texas Children’s Hospital CVD and led by co-directors Drs. Maria Elena Bottazzi and Peter Hotez — and in-licensed from BCM Ventures, Baylor College of Medicine’s integrated commercialization team, to Hyderabad-based vaccine and pharmaceutical company Biological E. Limited (BE).

After completing two Phase III clinical trials involving more than 3000 subjects the vaccine was found to be safe, well tolerated, and immunogenic. Current research shows Corbevax notably effective against the Ancestral-Wuhan strain and the globally dominant Delta variant, press materials note.

Safe, streamlined, low-cost vaccines for middle- to low-income countries are central to the world’s fight against the COVID-19 pandemic, the two Houston organizations note. Indeed, without widespread vaccination of populations in the Global South, additional virus variants will arise, hindering the progress achieved by currently available vaccines in the United States and other Western countries, per research.

“This announcement is an important first step in vaccinating the world and halting the pandemic,” said Hotez in a statement. “Our vaccine technology offers a path to address an unfolding humanitarian crisis, namely the vulnerability the low- and middle-income countries face against the delta variant. Widespread and global vaccination with our Texas Children’s-Baylor-BE vaccine would also forestall the emergence of new variants. We have previously missed that opportunity for the alpha and delta variant. Now is our chance to prevent a new global wave from what might follow.”

------

This article originally ran on CultureMap.

Texas Children's Hospital and Baylor College of Medicine are working on a new COVID-19 vaccine candidate. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston health care organizations team up for the 'people's vaccine'

COVID Collaboration

Two major health care institutions in Houston — Texas Children's Hospital and the Baylor College of Medicine — are a step closer to rolling out what they dub the "people's vaccine" for COVID-19.

The two institutions, along with India-based vaccine and pharmaceutical company Biological E Ltd., have gained approval to move ahead this month with Phase III clinicals trials in India of a COVID-19 vaccine candidate called Corbevax. The Texas Children's Hospital Center for Vaccine Development developed the vaccine's protein antigen, which was licensed from the Baylor College of Medicine's BCM Ventures commercialization arm.

Unlike COVID-19 vaccines in the U.S., Corbevax contains the so-called "spike protein" from the surface of the novel coronavirus. Once that protein is injected via a vaccine, the body is supposed to begin building immunity against the protein and thereby prevent serious illness.

Experts envision Corbevax being a readily available weapon in the global fight against the COVID-19 pandemic, thanks to the simple vaccine platform (like the one used to prevent Hepatitis B) and the ability to store the vaccine in normal refrigerated settings. The targets of this vaccine are children and mothers.

"In the midst of India's public health crisis, it is our hope that our Texas Children's and Baylor COVID-19 vaccine can be released for emergency authorization in India and in all countries in need of essential COVID-19 vaccinations," Dr. Peter Hotez, co-director of the Texas Children's Hospital Center for Vaccine Development, says in a June 9 news release.

India has reported more than 29 million cases of COVID-19, causing 354,000 deaths. The country's COVID-19 surge reached its peak in May.

"The vaccines currently available cannot be manufactured quick enough to meet supply shortages in low-income countries," Hotez says. "Our vaccine is truly 'the people's vaccine,' created to serve the most marginalized and underserved populations that are hardest hit by this pandemic. This is the vaccine that could be used to vaccinate the world."

In the Phase III trial, the two-dose Corbevax vaccine will be administered to about 1,200 people age 18 to 80 at 15 sites in India. A larger global study of Corbevax is in the works.

According to India.com, Corbevax could be the most affordable COVID-19 vaccine available in the nation of nearly 1.37 billion people, costing close to $7 for a two-dose regimen. The Indian government already has preordered 300 million doses of Corbevax, which has shown promise in Phase I and Phase II trials. The Phase II trial ended in April.

If the Phase III trial goes as planned, doses could be widely administered as soon as August. Biological E initially plans to produce 75 million to 80 million doses per month, according to media reports. The Indian company foresees manufacturing at least 1 billion doses by the end of 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.