The program trains health care providers various youth health specialties to help them treat adolescents holistically and comprehensively. Photo via BCM.edu

A Houston-based training program focused on training leaders in adolescent and young adult health has just received fresh funding to support its cause.

The Baylor College of Medicine-Texas Medical Center Leadership Education in Adolescent Health, or BCM-TMC LEAH, training program has been awarded a five-year grant totaling $2.3 million. The program is one of only seven such training programs funded by the Health Resources and Services Administration and the Maternal and Child Health Bureau.

“Adolescents make up about 20 percent of the U.S. population yet account for disproportionate rates of mortality from accidents, homicides, suicide, and other conditions related to mental illness,” says Dr. Albert C. Hergenroeder, professor and chief of the division of adolescent medicine and sports medicine and project director for BCM-TMC LEAH, in a news release. “The goal is to train and prepare healthcare professionals to assume leadership roles in the development and improvement of the system of care for adolescents and young adults locally, in Texas, in HRSA Region 6 (Oklahoma, New Mexico, Arkansas and Louisiana), and nationally.”

BCM-TMC LEAH provides didactic, experiential, and research-based interdisciplinary education and training, per the news release, across core health disciplines of medicine, nursing, nutrition, psychology, social work, and public health. It's the fourth time since 1997 the program has received funding.

Along with Hergenroeder, Dr. Connie Wiemann, director of research in the division of adolescent medicine and sports medicine, based at Texas Children’s Hospital, is co-director of the program. The two medical professionals also collaborate with:

  • Dr. Diane Santa-Maria, dean and associate professor in the Department of Research at the University of Texas Health Science Center at Houston Cizik School of Nursing
  • Dr. Christine Markham, chair of health promotion and behavioral sciences and deputy director for the Texas Prevention Research Center at University of Texas Health Science Center at Houston School of Public Health
  • Dr. Sarah Norendorf, associate professor and associate dean for research and faculty development
  • Shelley Gonzales, clinical assistant professor and assistant director of field education at the University of Houston Graduate College of Social Work.

“There has been an increased urgency during the last few years of the need to address adolescent health problems, such as suicide, eating disorders and violence in adolescents,” Hergenroeder says. “These problems require solutions for populations as well as individuals.

"For example," Hergenroeder continues, "an individual patient with an eating disorder will require treatment with an interdisciplinary team of physicians, psychologists, nurses, dietitians and social workers yet for a population, the expertise of researchers and public health experts should look at what broader interventions might be used in the prevention of eating disorders. LEAH is designed to give comprehensive training in all aspects of the threats to adolescent and young adult health in the U.S.”

The program trains pre- and postdoctoral students, medicine fellows, and residents by connecting them with faculty across a multitude of related specialized fields. The trainees then go into communities prepared to holistically treat and focus on problems adolescents and young adults are facing, going beyond just physical and mental health.

“The comprehensive training experience also includes a focus on skills to conduct and disseminate research to promote practices and policies that impact adolescents and young adults in a variety of settings,” said Wiemann. "All trainees will learn tools to engage stakeholders and identify opportunities to improve systems of care. In this way, all disciplines play an important role in improving the health and well-being of this population. And healthcare administrative training is incorporated into the LEAH program so that LEAH trainees will be able to successfully execute great research, clinical, teaching and advocacy programs to improve adolescent and young adult health."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”