The program trains health care providers various youth health specialties to help them treat adolescents holistically and comprehensively. Photo via BCM.edu

A Houston-based training program focused on training leaders in adolescent and young adult health has just received fresh funding to support its cause.

The Baylor College of Medicine-Texas Medical Center Leadership Education in Adolescent Health, or BCM-TMC LEAH, training program has been awarded a five-year grant totaling $2.3 million. The program is one of only seven such training programs funded by the Health Resources and Services Administration and the Maternal and Child Health Bureau.

“Adolescents make up about 20 percent of the U.S. population yet account for disproportionate rates of mortality from accidents, homicides, suicide, and other conditions related to mental illness,” says Dr. Albert C. Hergenroeder, professor and chief of the division of adolescent medicine and sports medicine and project director for BCM-TMC LEAH, in a news release. “The goal is to train and prepare healthcare professionals to assume leadership roles in the development and improvement of the system of care for adolescents and young adults locally, in Texas, in HRSA Region 6 (Oklahoma, New Mexico, Arkansas and Louisiana), and nationally.”

BCM-TMC LEAH provides didactic, experiential, and research-based interdisciplinary education and training, per the news release, across core health disciplines of medicine, nursing, nutrition, psychology, social work, and public health. It's the fourth time since 1997 the program has received funding.

Along with Hergenroeder, Dr. Connie Wiemann, director of research in the division of adolescent medicine and sports medicine, based at Texas Children’s Hospital, is co-director of the program. The two medical professionals also collaborate with:

  • Dr. Diane Santa-Maria, dean and associate professor in the Department of Research at the University of Texas Health Science Center at Houston Cizik School of Nursing
  • Dr. Christine Markham, chair of health promotion and behavioral sciences and deputy director for the Texas Prevention Research Center at University of Texas Health Science Center at Houston School of Public Health
  • Dr. Sarah Norendorf, associate professor and associate dean for research and faculty development
  • Shelley Gonzales, clinical assistant professor and assistant director of field education at the University of Houston Graduate College of Social Work.

“There has been an increased urgency during the last few years of the need to address adolescent health problems, such as suicide, eating disorders and violence in adolescents,” Hergenroeder says. “These problems require solutions for populations as well as individuals.

"For example," Hergenroeder continues, "an individual patient with an eating disorder will require treatment with an interdisciplinary team of physicians, psychologists, nurses, dietitians and social workers yet for a population, the expertise of researchers and public health experts should look at what broader interventions might be used in the prevention of eating disorders. LEAH is designed to give comprehensive training in all aspects of the threats to adolescent and young adult health in the U.S.”

The program trains pre- and postdoctoral students, medicine fellows, and residents by connecting them with faculty across a multitude of related specialized fields. The trainees then go into communities prepared to holistically treat and focus on problems adolescents and young adults are facing, going beyond just physical and mental health.

“The comprehensive training experience also includes a focus on skills to conduct and disseminate research to promote practices and policies that impact adolescents and young adults in a variety of settings,” said Wiemann. "All trainees will learn tools to engage stakeholders and identify opportunities to improve systems of care. In this way, all disciplines play an important role in improving the health and well-being of this population. And healthcare administrative training is incorporated into the LEAH program so that LEAH trainees will be able to successfully execute great research, clinical, teaching and advocacy programs to improve adolescent and young adult health."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics