The project would nearly eliminate the emissions associated with power and steam generation at the Dow plant in Seadrift, Texas. Getty Images

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.

---

This story appeared on our sister site, EnergyCapitalHTX.com.

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

Houston chemist earns $12M grant to support innovative soil pollutant removal process

making moves

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo via Getty Images

Houston entrepreneur launches new venture to shine light on sustainability

energy transition

A Houston nuclear engineer and entrepreneur wants consumers to capture their own ray of sunlight to brighten the prospect of making clean energy a bigger part of the power grid.

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. An experienced entrepreneur, Childress also serves as founder and CEO of technology software company Macorva.

Although trained in nuclear power plant design, solar power drew his interest as a cheaper and more accessible alternative, and Childress tells InnovationMap that he thinks that the transition to cleaner energy, in Texas especially, needs to step up.

With energy demand skyrocketing, and the push toward renewable solutions, solar seems like a safe bet for Childress, a former competitive high-stakes poker player. Childress cites a recent Yale University study that says 63 percent of Americans “feel a personal responsibility to help reduce global warming.”

But some studies show that 80 to 90 percent of the money invested into fighting climate change “aren’t going to things that people actually consider helpful,” he says.

“They’re more just projects that sound good, that are not actually taking any action,” says Childress, who has called Houston home for 25 years. He received his doctorate in medical physics at M.D. Anderson Cancer Center, where he worked on software that provided radiation therapy for patients.

The initial Kickstarter fundraising round, which will be launched soon, will finance the construction of one utility-scale solar farm, on about five to 10 acres, which would produce about 1 megawatt, or 1,000 kilowatts, of clean energy. The plant would make enough energy to power about 200 average homes.

Childress says interest has been strong, with several thousand signed up on the Kickstarter launch list. Some who are signed up expressed interest in a subscription, he said, and that may be offered later. Initially, though, for a one-time purchase of $95, a Solar Slice client can purchase one virtual 50W slice of solar power, produced by the farm. Over its lifetime, Childress says, that one purchase can offset three tons of carbon dioxide.

The app tracks carbon offsetting, and energy production for the slice, showing a client “exactly how much I have helped the climate, here’s exactly how (many) emissions I have prevented from putting in the atmosphere,” he says.

The energy produced by five slices can offset the average American’s carbon footprint for a year, and the power generated by the solar farm will be sold to the electric grid. As clients purchase more slices, they can earn eco-credits to donate to other climate-friendly partners, to plant trees or create pollinator habitats.

While Solar Slice is a for-profit venture, contributors won’t get rich or even make money from their purchase. Rather, it provides validation.

“Our focus is maximizing the real world impact, not for financial gain. This is not something people sign up (for) to make money. We’re really clear about that,” Childress says. “I want to show that it’s possible to have a for-profit company that is sustainable, that does good work.

“And hopefully, we can be part of the spirit…for a bigger movement, and for consumers and business, especially, to do things that matter.”


Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo courtesy

The largest U.S. solar plants are in Nevada and California, and those states are sites under consideration, but Childress says Texas is the most likely home for the initial project. The ten largest utility-scale solar plants in Texas by capacity are all in far west or central parts of the state, according to the state comptroller’s office.

Childress has a team of four, who are handling the marketing, plant design and site scouting, and hopes to hire five to 10 more, depending on response and growth. He says the Solar Slice consumer can directly connect in real time to the contribution that their purchase will make toward a green energy future.

“That was our inspiration..let’s start something that is really making a difference..and making really clear to the individuals what’s being done,” he says.

Solar energy has become a growing source of power for Texas, comprising about 6 percent of the state’s energy generation, as of 2022, the comptroller’s office says.

The state ranks first in projected growth of solar energy over the next five years, with more than 9,500 operating solar plants, and many thousands more announced, according to the state Public Utility Commission.

“We would absolutely love to make this into something where we are building plants around the nation, around the world,” Childress he says.

However, resistance to alternative energy projects like solar and wind, especially on a large scale, remains in some quarters.

Obtaining site permits for swaths of land can be also a challenge. For example, a recent survey by Berkeley Lab of 123 professionals from 62 unique, large-scale wind and solar energy facilities showed that about one-third of wind and solar siting applications in the past five years were canceled.

Half of the projects experienced delays of six months or longer. And according to the survey, developers expect the trend to continue, and become more expensive to address.

However, another Berkeley Lab survey of residents who live within three miles of a solar power plant showed that most view the plant positively. The larger the plant, the more negative the response in the survey. The smaller the farm, the more positive the reactions.

Childress says many of the common objections to utility-scale solar farms are misguided, and incorrect. For example, the concern that they would take over available farmland or take up too much space.

He says that even if the entire U.S. power grid relied solely on solar power, the plants would occupy not even a half percent of available land, which is about one percent farmland.

------

This article originally ran on EnergyCapital.

Here's why more and more companies — across industries — are making the switch to sustainable technology. Photo via Getty Images

Houston expert on why companies across industries are investing in sustainable energy

guest column

In a modern business landscape characterized by increasing uncertainty and volatility, energy resilience has emerged as a cornerstone of strategic decision-making.

Let's delve deeper into why executives should view energy resilience as one of the best risk management investments they can make.

Mitigating risks and enhancing stability

Investing in energy resilience isn't solely about averting risks; it's about mitigating the potential losses that could arise from energy-related disruptions. It is estimated that half of today’s businesses lack an effective resilience strategy, even though nearly 97 percent of companies have been impacted by a critical risk event.

Whether it's power outages from extreme weather events, grid emergencies from a changing resource mix that is more weather dependent or cyber-attacks, disruptions can inflict substantial financial and reputational damage on businesses. By implementing resilient energy infrastructure and practices, organizations can minimize the impact of such disruptions, ensuring consistent operations even in the face of adversity. As an added benefit, these investments can also contribute to enhancing the stability of our grid infrastructure, benefiting not just individual businesses but the local community and the entire economy.

Improving costs and operational efficiency

Energy resilience also isn't just a defensive strategy; it's also about optimizing costs and operational efficiency to create competitive advantage. By investing in resilient energy infrastructure, such as backup power systems and microgrids, businesses can reduce the downtime associated with energy disruptions, thus avoiding revenue losses and operational inefficiencies.

Additionally, resilient energy solutions often lead to long-term cost savings through increased energy efficiency and reduced reliance on costly backup systems. As circumstances become increasingly uncertain, businesses that prioritize energy resilience can gain a competitive edge by operating more efficiently and cost-effectively than their counterparts.

Ensuring consistent operations amidst uncertainty

In today's rapidly changing business environment, characterized by geopolitical tensions, climate change, and technological advancements, uncertainty has become the new normal. Amidst this uncertainty, ensuring consistent operations is paramount for business continuity and long-term success. Investing in energy resilience provides businesses with the assurance that they can maintain operations even in the face of unforeseen challenges.

Whether it's a sudden power outage from a storm or the grid is stressed and unable to deliver reliable power, resilient energy infrastructure enables organizations to adapt swiftly and continue delivering products and services to customers without interruption.

Enhancing sustainability efforts

In recent years, a growing emphasis on sustainability and environmental stewardship has led to organizations recognizing the importance of reducing their carbon footprint and transitioning towards cleaner, renewable energy sources. Investing in energy resilience provides an opportunity to align sustainability efforts with business objectives.

By integrating renewable energy technologies and energy-efficient practices into their resilience strategies, organizations can not only enhance their environmental performance but also achieve long-term cost savings, ensure regulatory compliance, and build stakeholder trust.

The value of energy resilience for businesses

It is not enough to successfully handle day-to-day operations anymore; organizations need to be prepared for unpredictable events with a reliable energy supply and backup plan. Recently, a hospital in Texas had to evacuate patients and experienced heavy financial losses due to the failure of their traditional diesel generators during an extended outage.

After reevaluating their resiliency strategy, they decided to implement full-facility backup power using Enchanted Rock’s dual-purpose managed microgrid solution, which kept their power on during the next outage and ensured both patient safety and full operational capabilities. Investing in an energy resilience strategy like a microgrid will mitigate these risks and ensure always-on power in times of uncertainty.

A responsible decision for the greater good

Beyond the immediate benefits to individual businesses, investing in energy resilience is also a responsible decision for the greater good. As businesses become increasingly reliant on the grid infrastructure, ensuring its resilience is essential for the stability and reliability of the entire energy ecosystem. By proactively investing in resilient energy solutions, for themselves, businesses also contribute to strengthening the grid infrastructure, reducing the risk of widespread outages, and promoting the overall resilience of the energy system.

Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place. In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before.

———

Ken Cowan is the senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology.

This article originally ran on EnergyCapital.
What can hospital systems do to combat climate change? A lot, according to a new report from the Center for Houston's Future. Photo via Getty Images

New report calls for Houston health care community to take action amid climate change

time for action

A new report underscores an “urgent need” for health care systems in the Houston area to combat climate change and avoid an environmental “code blue.”

“By adopting collaborative strategies and leveraging technological innovations, health care providers can play a pivotal role in safeguarding the health of Houston’s residents against the backdrop of an evolving climate landscape,” says the report, published by the Center for Houston’s Future.

Among the report’s recommendations are:

  • Advocate for policies that promote decarbonization.
  • Create eco-friendly spaces at hospitals and in low-income communities, among other places.
  • Recruit “champions” among health leaders and physicians to help battle climate change.
  • Establish academic programs to educate health care professionals and students about climate health and decarbonization.
  • Bolster research surrounding climate change.
  • Benchmark, track, and publish statistics about greenhouse gas emissions “to foster accountability and reduce environmental impacts of the health care sector.” The report notes that the U.S. health care sector emits 8.5 percent of the country’s greenhouse gases.

“By embracing collaborative strategies, acting with urgency and implementing sustainable practices, our region’s health care providers can play a pivotal role in creating a healthier, more resilient Houston,” says Brett Perlman, outgoing president and CEO of the Center for Houston’s Future. “If we work together, given all the collective wisdom, resources and innovation concentrated in our medical community, we can tackle the challenges that are confronting us.”

The report highlights the threat of climate-driven disasters in the Houston area, such as extreme heat, floods, and hurricanes. These events are likely to aggravate health issues like heatstroke, respiratory illnesses, cardiovascular diseases, and insect-borne diseases, says the report.

St. Luke’s Health, a nonprofit health care system with 16 hospitals in the Houston area and East Texas, provided funding for the report.

------

This article originally ran on EnergyCapital.

"Companies and stakeholders across the energy spectrum need to act together and act fast." Photo via Getty Images

Energy tech expert: Recent report shines light on clean tech progress needed by 2030

guest column

Houston is home to some of the nation's largest oil and gas exploration and production firms, making it one of the world’s most important energy capitals. Growing regional support for pioneering clean tech, such as carbon capture, will help achieve the crucial transition to net zero whilst maintaining economic stability, boosting local industries and creating jobs.

According to the International Energy Agency (IEA), North America and Asia Pacific are expected to hold the largest share in carbon capture capacity. North America’s world-leading carbon capture potential comes as no surprise given the nation’s dominance in oil and gas, and ideal geology for sequestration.

The IEA’s recently published World Energy Outlook 2023 depicts a global market that is in transition. With more companies, world leaders and governments recognizing that a shift towards sustainable energy is both inevitable and transformative, the question is no longer whether we switch to clean energy, but rather how soon the transition can happen.

For every $1 in investment spending on fossil fuels globally, $1.8 is now being spent to develop clean energy, according to the IEA. Although the clean energy market has almost doubled in the past five years to reach an estimated $2.8 trillion in 2023, investment needs to hit $4.2 trillion per year by 2030 to achieve the universally shared goal of net zero. The IEA believes around 1 Gigaton of CO2 must be captured in 2030, rising to 6 Gigatons by 2050 to achieve the Net Zero Emissions by 2050 Scenario (termed NZE Scenario). This presents a tremendous opportunity for government stakeholders and the business community in Houston to turbocharge the economy and protect the planet from the impact of climate change.

While volatility around the energy market lingers, sustainable technologies remain one of the most dynamic areas of global energy investment. An essential ingredient to its success is bringing on board innovators, entrepreneurs, corporations, and financiers to ensure technology innovation is front and center in facilitating the clean energy transition.

Carbon capture technology is critical, but energy leaders and hard-to-abate industries are under pressure to move faster. To do that, the carbon capture industry must scale up its deployment and increase adoption if hard-to-abate sectors are to address the 30 percent of global CO2 emissions for which they are responsible. Governments have a pivotal role to play in providing financial, regulatory and policy incentives, facilitating a collaborative environment between financiers, hard-to-abate operators, and clean tech companies. While we are moving in the right direction, there is no room for complacency or procrastination given the short timescales for meaningful action.

Over the past several years, Carbon Clean, a global company that is revolutionizing carbon capture, has enjoyed significant expansion in North America. Following the passage of the Inflation Reduction Act (IRA) in August 2022, we saw huge interest in our modular industrial carbon capture technology almost overnight, resulting in a 64 percent increase in inquiries from the U.S. To meet this booming demand, we have opened a U.S. headquarters in Houston, and have plans to double our U.S. headcount to meet industry requirements for our scalable and cost-effective technology, CycloneCC. In short, the United States is poised to become our biggest market. Given our latest lead investor and partner is Houston-based Chevron New Energies, there is no better place than Houston to drive innovation in the country’s energy sector.

The IRA did more than just bring in new inquiries for our breakthrough technology – it also signaled to the energy sector that the federal government is getting serious about bringing emissions down. The impact of the IRA cannot be overstated, especially for the point-source carbon capture technology pioneered by Carbon Clean. While the IRA involves billions of dollars of public investment, it is set up in such a way that companies must make substantial investments first, acting as a down payment on fostering jobs and ensuring the business community is delivering ambitious climate action. The benefits are being felt locally as well – cities like Houston are at the forefront of what the IRA has to offer, taking advantage of these investments and reducing emissions.

Companies and stakeholders across the energy spectrum need to act together and act fast. With the dramatic growth required for carbon capture to have full effect, it will be essential for government, industry, and innovators to join together to concentrate on a number of projects and clusters. We are confident that with new cutting-edge technology and broad collaboration we can rapidly get the world on the right path to net zero.

———

Prateek Bumb is CTO and co-founder of Carbon Clean and the principal innovator of Carbon Clean’s industrial carbon capture technologies.

This article originally ran on EnergyCapital.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Trailblazing Houston entrepreneur brings big ideas to new Yahoo Finance show

tune in

Elizabeth Gore, co-founder and president of Houston's Hello Alice, debuted the first episode of her new video podcast series with Yahoo Finance on Thursday, April 24.

The weekly series, known as "The Big Idea with Elizabeth Gore," will focus on providing information and resources to small business owners and sharing stories of entrepreneurship, according to a news release from Yahoo Finance.

“Entrepreneurs and small business owners drive our country’s economy forward. With a record number of small businesses launching in our communities, my goal is to help every citizen live the American Dream. On the Big Idea, we will break down barriers for entrepreneurs and lift up opportunities for every person wanting to be their own boss,” Gore said in the release.

“By hosting the 'Big Idea' on Yahoo Finance, I’m looking forward to elevating business owners’ stories and providing actionable insights to small business owners at a scale like never before. I am blown away to be joining the number one finance news source that is already trusted by so many.”

Gore was joined by Hello Alice co-founder and CEO Carolyn Rodz in the premiere episode, titled "Got a big idea for a small business? Here's your first step," to discuss the steps they took when launching the business.

Gore and Rodz founded Hello Alice in 2017. The fintech platform supports over 1.5 million small businesses across the nation. It has helped owners access affordable capital and credit and distributed over $57 million in grants to businesses across various industries. The company raised a series C round backed by Mastercard last year for an undisclosed amount and reported that the funding brought the company's valuation up to $130 million at the time.

According to Yahoo Finance, Gore's experience and expertise build on its "mission to be the trusted guide of financial information to all investors, and democratize access to quality content."

“Over the past year, we invested in expanding our programming lineup with the launch of new shows and podcasts, and welcomed new financial creators and influencers into our newsroom,” Anthony Galloway, head of content at Yahoo Finance, added the release. “By diversifying our programming and talent roster, Yahoo Finance is introducing unique points-of-view that make financial topics more engaging, actionable, and personalized. Small business owners are a vital part of our audience, so we’re excited to welcome Elizabeth Gore from Hello Alice, whose insights and expertise will help us serve and connect with this important cohort in meaningful ways.”

The show is available on Spotify, Apple Podcasts, iHeart, Pandora, and Amazon Music for listening. Streamers can view it on yahoofinance.com, Amazon Prime Video, Samsung TV, Fire TV, Vizio, Haystack, DirectTV and other streaming platforms. Watch the premiere here:

7 top Houston researchers join Rice innovation cohort for 2025

top of class

The Liu Idea Lab for Innovation and Entrepreneurship (Lilie) has announced its 2025 Rice Innovation Fellows cohort, which includes students developing cutting-edge thermal management solutions for artificial intelligence, biomaterial cell therapy for treating lymphedema, and other innovative projects.

The program aims to support Rice Ph.D. students and postdocs in turning their research into real-world solutions and startups.

“Our fourth cohort of fellows spans multiple industries addressing the most pressing challenges of humanity,” Kyle Judah, Lilie’s executive director, said in a news release. “We see seven Innovation Fellows and their professors with the passion and a path to change the world.”

The seven 2025 Innovation Fellows are:

Chen-Yang Lin, Materials Science and Nanoengineering, Ph.D. 2025

Professor Jun Lou’s Laboratory

Lin is a co-founder of HEXAspec, a startup that focuses on creating thermal management solutions for artificial intelligence chips and high-performance semiconductor devices. The startup won the prestigious H. Albert Napier Rice Launch Challenge (NRLC) competition last year and also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Sarah Jimenez, Bioengineering, Ph.D. 2027

Professor Camila Hochman-Mendez Laboratory

Jimenez is working to make transplantable hearts out of decellularized animal heart scaffolds in the lab and the creating an automated cell delivery system to “re-cellularize” hearts with patient-derived stem cells.

Alexander Lathem, Applied Physics and Chemistry, Ph.D. 2026

Professor James M. Tour Laboratory

Lathem’s research is focused on bringing laser-induced graphene technology from “academia into industry,” according to the university.

Dilrasbonu Vohidova is a Bioengineering, Ph.D. 2027

Professor Omid Veiseh Laboratory

Vohidova’s research focuses on engineering therapeutic cells to secrete immunomodulators, aiming to prevent the onset of autoimmunity in Type 1 diabetes.

Alexandria Carter, Bioengineering, Ph.D. 2027

Professor Michael King Laboratory

Carter is developing a device that offers personalized patient disease diagnostics by using 3D culturing and superhydrophobicity.

Alvaro Moreno Lozano, Bioengineering, Ph.D. 2027

Professor Omid Veiseh Lab

Lozano is using novel biomaterials and cell engineering to develop new technologies for patients with Type 1 Diabetes. The work aims to fabricate a bioartificial pancreas that can control blood glucose levels.

Lucas Eddy, Applied Physics and Chemistry, Ph.D. 2025

Professor James M. Tour Laboratory

Eddy specializes in building and using electrothermal reaction systems for nanomaterial synthesis, waste material upcycling and per- and polyfluoroalkyl substances (PFAS) destruction.

This year, the Liu Lab also introduced its first cohort of five commercialization fellows. See the full list here.

The Rice Innovation Fellows program assists doctoral students and postdoctoral researchers with training and support to turn their ideas into ventures. Alumni have raised over $20 million in funding and grants, according to Lilie. Last year's group included 10 doctoral and postdoctoral students working in fields such as computer science, mechanical engineering and materials science.

“The Innovation Fellows program helps scientist-led startups accelerate growth by leveraging campus resources — from One Small Step grants to the Summer Venture Studio accelerator — before launching into hubs like Greentown Labs, Helix Park and Rice’s new Nexus at The Ion,” Yael Hochberg, head of the Rice Entrepreneurship Initiative and the Ralph S. O’Connor Professor in Entrepreneurship, said in the release. “These ventures are shaping Houston’s next generation of pillar companies, keeping our city, state and country at the forefront of innovation in mission critical industries.”

Houston startup Collide secures $5M to grow energy-focused AI platform

Fresh Funds

Houston-based Collide, a provider of generative artificial intelligence for the energy sector, has raised $5 million in seed funding led by Houston’s Mercury Fund.

Other investors in the seed round include Bryan Sheffield, founder of Austin-based Parsley Energy, which was acquired by Dallas-based Pioneer Natural Resources in 2021; Billy Quinn, founder and managing partner of Dallas-based private equity firm Pearl Energy Investments; and David Albin, co-founder and former managing partner of Dallas-based private equity firm NGP Capital Partners.

“(Collide) co-founders Collin McLelland and Chuck Yates bring a unique understanding of the oil and gas industry,” Blair Garrou, managing partner at Mercury, said in a news release. “Their backgrounds, combined with Collide’s proprietary knowledge base, create a significant and strategic moat for the platform.”

Collide, founded in 2022, says the funding will enable the company to accelerate the development of its GenAI platform. GenAI creates digital content such as images, videos, text, and music.

Originally launched by Houston media organization Digital Wildcatters as “a professional network and digital community for technical discussions and knowledge sharing,” the company says it will now shift its focus to rolling out its enterprise-level, AI-enabled solution.

Collide explains that its platform gathers and synthesizes data from trusted sources to deliver industry insights for oil and gas professionals. Unlike platforms such as OpenAI, Perplexity, and Microsoft Copilot, Collide’s platform “uniquely accesses a comprehensive, industry-specific knowledge base, including technical papers, internal processes, and a curated Q&A database tailored to energy professionals,” the company said.

Collide says its approximately 6,000 platform users span 122 countries.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.