Houston-based MacroFab has created the Uber or Airbnb of electronics manufacturing. Getty Images

It takes an unnecessarily long time for electronic devices to get from idea to reality — and much of that is due to inefficiency in manufacturing. Just getting a prototype together takes weeks of back and forth between the engineer and the manufacturer.

"The business model for contract manufacturing hadn't changed in 30 years," Chris Church says. "It was phone calls, emails, going out and playing golf, going to lunch, and negotiating everything endlessly."

Houston-based MacroFab is addressing these antiquated and outdated ways of manufacturing and changing the way electronics manufacturing is done. For its revolutionary work, the company has consistently seen its revenue at least double — sometimes tripling or quadrupling — every year, and projects to at least triple in 2019.

Addressing an underserved market
Church — who has a background in hardware development, specifically within robotics — created MacroFab in 2013 and launched the platform in 2015. Misha Govshteyn joined the board in 2014 and became CEO last summer. The duo co-founded cloud-based security-as-a-service company, Alert Logic, in Houston in 2002.

Using its custom software, MacroFab enables customers to upload their designs through the website, where they can then receive projected timeline and pricing information from the get go. The company has its own manufacturing area in its office for prototypes and small orders, but its network of large manufacturers is a key part of the MacroFab's growth equation.

The company has about 20 manufacturing plants as partners that can pick up manufacturing jobs from MacroFab customers when the plant has space on its lines up for grabs. Rather than let available capacity go to waste, these plants can easily pick up the design and materials to start production.

"It's not dissimilar to what Uber is doing with cars — there's a lot of people with cars that could give you a ride if they knew you were out there," Govshteyn says. "It's that matchmaking function is essentially what we're doing with our customers."

The manufacturing partners benefit from jobs they otherwise wouldn't have, and the MacroFab customers get access to a plant that they didn't have to do the legwork to find. Govshteyn says a he's heard horror stories from people who had orders that were unceremoniously dropped by a manufacturer because another one of its clients just placed a large order.

"That shouldn't happen. If a factory gets too busy, it should be easy enough to take that job and move it somewhere else," Govshteyn says. "But, right now, there's not a way to do that."

Using cloud technology, the MacroFab platform can easily share the design and translate it to any given factory, Church says. They also have a technology that combine smaller orders together so there's no wasted resources, which brings down the cost for the customer.

While usually a company might have to find a new manufacturer as they scale up and start making larger orders, MacroFab customers don't have to start from scratch to find a new plant that can take their order — MacroFab will do the matchmaking for them.

"We've created and are continuing to build a marketplace for excess manufacturing capacity," Church says.

MacroFab owns the customer experience and the sales aspect — ensuring a more positive and consistent experience — while the manufacturers can just take the jobs and go.

Scaling up
The manufacturing marketplace is a newer focus for MacroFab — the company just launched it in beta this year — and is a big proponent of the company's growth. Before, the company was limited to what it could produce in its own factory taking on prototype and small orders. Now, with access to the manufacturers, the company has served 1,700 customers, building 500,000 units for about 4,000 different products. Those figures, Church says, are scaling up so rapidly as they expand to new partners.

"This is the first quarter where more gets produced outside of our factory than inside of it," Govshteyn says. "By this time in Q1, 75 percent of our revenue will [come from outside manufacturing plants.]"

Since manufacturing plants haven't historically collaborated, Govshteyn says the reception from manufacturers has been "cautiously optimistic." But then they realize they are getting customers for free — all they have to do is meet the requirements and deliver on time, he says.

"It's great for them to see that their factory is only half used, but then they can fill it up with jobs from MacroFab," Govshteyn says.

Houston has been a great city for MacroFab with its port manufacturing and logistics, two things Govshteyn says MacroFab is focusing on.

"At the end of the day, we're a manufacturing company, and I think we'll dabble in logistics," he says. "There's a lot worse places to start a logistics-heavy company."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”