Lab safety isn't always standard. Graphic byMiguel Tovar/University of Houston

Safety protocols are only as good as the Principal Investigators who enforce them and the students who adopt them. Operating a lab is no easy feat. It takes patience, consistency and teamwork. In an attempt to learn more about how PIs create a culture of safety, I reached to a few across our university campus to get some tips and tricks for creating effective safety procedures.

A PI’s guide to safety protocols

“My protocol is very clear, and students know the proper attire, but I had one student who arrived at the lab with shorts on. Apparently, he came from the gym … I guess he thought it was OK, but it’s definitely not,” said Mehmet Orman, assistant professor of Chemical and Biomolecular Engineering at the Cullen College of Engineering.

Orman’s research work aims to explore and analyze why some bacterial cells are stubborn to certain therapies. Currently, he uses E. Coli as a model organism to conduct his experiments. His research has the potential to uncover the best methods for combating drug resistant bacteria (aka “super bugs”) which is a seen by many researchers and health organizations as a global crisis.

With such important work, Orman must run a tight ship in his lab. When I spoke to him, he provided his best practices for lab safety.

1. Signage is key

Hazard communication is critical in the lab. “Signage is VERY important. we’ve had students leave Bunsen burners on, which is extremely hazardous. I have signs up everywhere reminding students to turn off the flame.”

2. Remind and repeat

The rule of thumb: you need to hear something 5-7 times for it to sink in. “My lab is new, and my students are young and still learning how to conduct themselves safely. I have to remind them of the protocol religiously, but I’d rather repeat something a million times than have an unfortunate incident occur.”

3. Tailor safety protocols to suit your lab

One size does not fit all when it comes to lab safety. “UH has wonderful, baseline safety protocol and resources for me to use, but every lab is different. I take the foundational information provided by the university and tailor it to fit the needs of my work.”

4. Take baby steps

Throwing students into the experimental deep end can be a big risk when it comes to safety. “Because I am a new researcher at UH and my students are new, I decided to take baby steps with my experiments. My work is about studying drug resistant bacteria, so I decided to begin my scientific exploration with E. coli, a less dangerous organism.” – No pseudomonas aeruginosa just yet.

5. Note to all students: Don’t be shy

“Over time, many of the students become friends. This becomes awkward if they witness their friend violating a safety rule. I encourage the students to speak up (even if it’s their friend), if they see something that threatens everyone’s safety. Everyone wins in the end.”

Safety is a part of the scientific process

Rachel Redfern, O.D., Ph.D., FAAO, is a UH faculty member and an active researcher. Her work focuses on ocular surface inflammation and the impact of contact lenses on normal and diseased eyes. With such sensitive work, safety in the lab is incredibly important to Redfern. She believes keeping her students safe begins at the top but depends on everyone in the lab.

“When students enter my lab, it’s my responsibility to create a safe space where they can perform experiments to answer their growing scientific questions,” said Redfern. “We work as a team to put safety first, but we’re all aware that everyone has different levels of lab safety experience – Every question (regarding safety) is a good one and the questions never asked are the dangerous ones.”

When asked how her students internalize a culture of safety, Redfern praised the education resources of the university.

“At UH, we have access to excellent training to promote a safe culture (shout out to Joe and the UH Environmental Health and Life Safety team!) and training is non-negotiable,” said Redfern. “Also, I often pair new students with seasoned students because setting a good example (among peers) is the best way to encourage students to follow safety practices during routine lab work.”

Eye on safety

When Redfern was a youngster in the lab, she learned that safety was critical to research.

“I was trained by scientists (and worked with peers) who view safety as an element of the scientific process,” said Redfern. “Fortunately, I haven’t been exposed to a ton of outrageous safety violations in my career; however, I have witnessed researchers smoking with latex gloves on and even eating in their dirty lab coats.”

At the end of the day, Redfern just wants to learn more about the complexities of the human eye and Orman wants to study super bugs and how to address a significant health issue. In order to do that, they must conduct experiments with the help of students in a safe environment. This takes team work, group and individual accountability, and everyone’s eye on safety.

When asked about his overall message to PIs and lab safety, Orman simply said, “We’re here for a purpose. We all must have each other’s back to stay safe and conduct meaningful research. It’s just how it is.”

------

This article originally appeared on the University of Houston's The Big Idea. Ciandra Jackson, the author of this piece, is the communications manager for the UH Division of Research.

Lab collaboration can help maintain lab safety, these researchers found. Graphic byMiguel Tovar/University of Houston

University of Houston: Teamwork makes the dream work when it comes to lab safety

Houston voices

Getting along with colleagues and forming connections actually helps create a culture of lab safety.

For the most part, we all know how important it is to adhere to universal lab safety rules such as wearing closed-toe shoes or properly labeling all chemicals. Oftentimes, we forget about the human relations side of the safety equation. Cultivating positive working relationships with colleagues is as important (maybe even more so) as learning the “technical” safety rules of a lab. In this edition of the Big Bang, I will discuss the role of interpersonal relationship within the culture of safety.

During my exploration of this topic, I did not specifically find literature that directly links positive interpersonal relationships and lab safety. However, I spoke with a few UH scientists about this topic and I read articles about how to create a positive work environment in the lab in which a common theme arose – communication.

Moreover, the safest labs are operated by people who communicate well and have strong interpersonal relationships. Dr. Colin N. Haile, director of operations at the University of Houston Animal Behavior Core Facility agrees. He runs a complex lab where proper lab safety is vital to the care of the researchers and animals.

“Teamwork and healthy working relationships are extremely important to ensure our work is performed safely and of the best quality,” Dr. Haile said. “When colleagues respect and establish open communication, they are more compelled to help one another adhere to safety protocols.”

Getting along with others is easy, right?

Getting along with others is not easy. We all have diverse backgrounds, life experiences, points of view and expertise. Consequently, the occasional clash with a colleague is not always avoidable.

Frequent showdowns cause disruptions in team morale, productivity and could be a catalyst for an unsafe science lab. In addition to cultivating open communication, there are a few other ways to maintain positive relationships in the lab that contribute to a culture of safety.

Tips for developing and maintaining positive working relationships in your science lab

  • Communication is king & clarity and concision is queen – Communicate exactly what you want and need in a clear, concise manner, especially if there’s a safety issue to address. Also, try to give your email a break – talk to you colleagues face-to-face. This may avoid miscommunication and builds a personal rapport and camaraderie with your teammate.
  • Be nice and respect others – This one is obvious, but important to mention. Stronger bonds and trust is created when you are friendly to colleagues…Hey, you can even take things a step further and show an interest in a co-worker’s family or hobbies outside of the lab. Again, building personal rapport instills trust amongst the group which contributes to safer work environments
  • Keep an open mind and consider diverse points of view – As mentioned earlier, our world is colorful and diverse. That’s what makes humans unique and interesting. Everyone comes from different walks of life and bring unique points of view to their place of business. Preserving superior interpersonal relationships requires colleagues to listen, understand and exhibit compassion towards each other’s points of view. When people are heard, they feel appreciated and possess the motivation to help keep their work space functional and safe.

Strong team = Safer labs and maybe a few cool, new science discoveries

Of course, I’m not suggesting 24-hour Kumbaya in the lab, but the concept of getting along is certainly one that encourages lab safety. Strong teams discover the greatest breakthroughs and are safer in the lab because trust, open communication and respect are established. Well, that’s it for this edition of the Big Bang. Until next time…Be well and stay safe!

------

This article originally appeared on the University of Houston's The Big Idea. Ciandra Jackson, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.