A national research institute recently opened a new lab and outpost adjacent to the University of Houston's campus. Photo via UH.edu

A national organization has opened a new Houston outpost at a local university campus.

The Electrochemical Safety Research Institute, or ESRI, of UL Research Institutes opened the doors to a new laboratory in Houston in November. The new space was established to further research renewable energy technologies.

“As the world transitions from fossil fuels to sustainable energy, we are working with research teams across several organizations to lay the scientific groundwork for safe and reliable energy storage alternatives,” says Judy Jeevarajan, ESRI’s executive director, in a news release. “Since several of our research partners are based in Houston, the natural progression was to open our own laboratory in the area.”

The lab is housed in the University of Houston Technology Bridge, a startup park next to the university’s main campus. A team of ESRI’s research scientists will have access to explore the safety and performance of renewable energy technologies. Per the release, ESRI already has ongoing projects with UH within hydrogen research, solid-state batteries, and the synthesis of magnesium-ion separators.

“We are significantly expanding both our capacity and scope to better meet today’s increasingly urgent safety challenges,” says Christopher J. Cramer, ULRI’s chief research officer. “Our new Houston facility is one element of that expansion. The lab will strengthen the synergies between ESRI and our research partners in the area and accelerate scientific discoveries to help create a safer, more sustainable world.”

The facility will also act as a homebase for all Houston-area collaborations. Per the release, the new lab "will also facilitate ESRI’s research partnership with Rice University on lithium-ion cell recycling and the research institute’s work with NASA’s Johnson Space Center on thermal runaway mitigation and micro-USB lithium-ion battery safety." The organization also collaborates with Houston-based Stress Engineering Services Inc.

“We’re delighted to welcome the Electrochemical Safety Research Institute to its new home in Houston,” says Chris Taylor, executive director of the Office of Technology Transfer and Innovation at the University of Houston, in the release. “Together, we can build upon our research culture of collaboration as we pursue innovations for the greater good.”

UH has launched its Tech Map, which visualizes startup and innovation activity across the city. Photo via Getty Images

University of Houston launches interactive map of the city's innovation ecosystem

introducing tech map

The greater Houston area spans 9,444 square miles — an area larger than the entire state of New Jersey — and the question was never if Houston's sprawl was going to affect interaction between startups, resources, and opportunities, but how to overcome these physical challenges with digital solutions. The latest of which has launched out of the University of Houston's Technology Bridge.

The Tech Map — an interactive, embeddable visualization that takes data about startups and other innovation players and compiles it into a map of entrepreneurial activity in the Houston area — has officially launched with hundreds of startups represented already.

"This kind of tool — it really tells you where innovation is happening, it's not just in the startup development organizations," says Lindsay Lewis, executive director of communications for the UH Division of Research. "It's amazing to see that it's happening all over the city."

The tool, which is free to embed and available to anyone, is already live on Houston Exponential's homepage and the city of Houston's Innovation Portal. It's comprised of data submitted by startup development organizations, self-submitted information, and research by the Tech Bridge's team.

To be represented on the map, click here.


Lewis stresses the importance of creating the tool in a collaborative way, which is why bringing on partners and their databases was so key. The tool isn't designed in Cougar Red or predominantly feature UH-based startups or anything. The Tech Map isn't meant to rock the boat of what any other organization is doing, rather just visually represent the goings on.

"For us, it was a balance between trying to show the story of Houston and where innovation is happening and aggregating, but what we didn't want to do was be a replacement. We wanted this to be a resource for an individual starting point," says Chris Taylor, executive director for the Tech Bridge. "The biggest challenge for most people is you really don't know where to start."

This year has been one for digital tools focused on better portraying Houston's innovation ecosystem. This summer, Houston Exponential launched the HTX TechList to virtually connect startups, mentors, investors, and other movers and shakers in Houston. The two entities are collaborative — HTX TechList's data is even involved in the Tech Map.

"There was a need for connection," Taylor says. "Since 2013 when I got here, that's always been a challenge and a hurdle. How do we connect all these different stakeholders in a way that's meaningful."

While the map is launched and ready to be used, it's only the beginning for it as it grows its data and adds new features.

"We're not done with this map — this is just the 1.0 version," Lewis says. "We're meeting to talk about next-step functionalities and where we are going to take it."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.