MacroFab has secured fresh investment to the tune of $42 million. Photo via macrofab.com

A Houston company has nearly doubled its total raised with its latest funding round.

MacroFab, a Houston-based electronics manufacturing platform, has announced $42 million in new growth capital led by Foundry and joined by BMW i Ventures, as well as existing investors Edison Partners and ATX Venture Partners. The platform was first launched by Misha Govshteyn and Chris Church in 2015.

“Given MacroFab’s compelling solutions to electronics manufacturing challenges and Foundry’s successful history with parallel companies, our investment is a perfect fit," Foundry Partner Seth Levine says in a news release. "This is a unique opportunity to be part of next generation cloud manufacturing and we’re excited to be joining forces with Misha and his team."

MacroFab built a platform that manage electronics manufacturing and enables real-time supply chain and inventory data. The platform can help customers go from prototype to high-scale production with its network of more than 100 factories across the continent.

“Electronics manufacturing is moving toward resilience and flexibility to reduce supply chain disruptions. These are long term trends recognized by Foundry and BMW i Ventures, who joined this round as investors,” says Govshteyn, MacroFab’s CEO, in a news release. “We are in the earliest stages of repositioning the supply chain to be more localized and focused on what matters to customers most — the ability to deliver products on time, meet changing requirements, and achieve a more sustainable ecological footprint. MacroFab is fundamental to building this new operating model.”

The company has seen significant growth amid the evolution of global supply chain that's taken place over the past few years. According to the company, shipments were up 275 percent year-over-year. To keep up with growth, MacroFab doubled its workforce, per the release, and opened a new facility in Mexico.

“Most companies have felt the pain of inflexible and fragile supply chains," says Daniel Herscovici, partner at Edison Partners, a growth equity firm focused on technology-enabled and SaaS solutions. "MacroFab’s cloud manufacturing platform is transforming contract manufacturing, enabling ‘Made in North America, faster design iteration, and increased supply chain resiliency, among its benefits. Edison Partners shares the company’s vision for addressing this more than $100 billion global market."

Misha Govshteyn, CEO of MacroFab Misha Govshteyn is the founder and CEO of MacroFab. Photo courtesy of MacroFab

MacroFab's latest $15 million round will help it expand and grow throughout North America. Photo via macrofab.com

Houston-based electronics manufacturing biz raises $15M in new funding

money moves

A Houston company that has optimized electronics manufacturing by setting up a digital platform connecting a network of factories across North America has raised its latest round of funding.

MacroFab closed a $15 million series B round led by New Jersey-based Edison Partners. ATX Venture Partners also participated, along with strategic investor Altium Limited, a leader in the electronics design software space.

The new funds will go toward keeping up with MacroFab's growth, specifically in expanding in North America and an increased investment in research and development, sales and marketing, and the opening of a new distribution center for international logistics this summer, according to a news release.

"MacroFab customers found themselves in a perfect storm last year, and went from being curious about cloud-enabled manufacturing to going all-in," says Misha Govshteyn, MacroFab CEO, in the release. "The turbulence started with the trade war and tariffs, and only accelerated with massive delays in delivering products from overseas and the ongoing microchip availability crisis.”

Govshteyn says the pandemic has affected traditional manufacturing processes. While some companies utilized manufacturing in China, international travel meant for impossible in-person troubleshooting. Digitization became increasingly optimal.

"Supply chain leaders are turning to MacroFab and our digital platform as a way to move faster," Govshteyn continues in the release. "If you're not as big as Apple, but want to build across multiple factories in parallel, our platform is the only way to do so without incurring immense costs".

MacroFab was founded in 2013 and has raised both seed and series A financing led by ATX Venture Partners and Techstars. Govshteyn and his co-founders — Chris Church, who serves as chief product officer, Chris Granberry, the company's COO — previously co-founded Alert Logic.

The trio of entrepreneurs reconvened to address an opportunity in a market that was home to an antiquated process within manufacturing. Lately, MacroFab's clients are looking to reduce waste.

"A typical electronics factory is only 60 percent utilized, according to New Venture Research, which is startlingly inefficient," Church says in the release. "A number of our customers focused on Environmental and Social Governance (ESG) issues see our ability to tap into this capacity as a step towards ecologically sustainable production."

The deal includes a new board member for MacroFab. Daniel Herscovici, partner at Edison Partners, will join MacroFab's board of directors

The company has "a proven track record of building successful SaaS and cloud infrastructure businesses together, and are now bringing supply chain innovation to the market at a time when global electronics manufacturing is facing disruption," Herscovici says in the release. "MacroFab is at the center of driving the digital transformation needed to unlock factory capacity, manufacturing agility and efficiency, and even new economic and labor markets for electronics makers across North America."

MacroFab's raise also included a new strategic partnership with Altium, one of the largest players in the electronics design space, per the release.

"Altium shares MacroFab's vision for digital transformation of manufacturing in the electronics industry," says Ted Pawela, chief ecosystem officer at Altium. "Our investment in, and partnership with MacroFab is a huge step forward in connecting design, supply chain, and manufacturing to accelerate innovation."

Houston-based MacroFab has created the Uber or Airbnb of electronics manufacturing. Getty Images

Houston electronics manufacturing company gears up for growth

On the line

It takes an unnecessarily long time for electronic devices to get from idea to reality — and much of that is due to inefficiency in manufacturing. Just getting a prototype together takes weeks of back and forth between the engineer and the manufacturer.

"The business model for contract manufacturing hadn't changed in 30 years," Chris Church says. "It was phone calls, emails, going out and playing golf, going to lunch, and negotiating everything endlessly."

Houston-based MacroFab is addressing these antiquated and outdated ways of manufacturing and changing the way electronics manufacturing is done. For its revolutionary work, the company has consistently seen its revenue at least double — sometimes tripling or quadrupling — every year, and projects to at least triple in 2019.

Addressing an underserved market
Church — who has a background in hardware development, specifically within robotics — created MacroFab in 2013 and launched the platform in 2015. Misha Govshteyn joined the board in 2014 and became CEO last summer. The duo co-founded cloud-based security-as-a-service company, Alert Logic, in Houston in 2002.

Using its custom software, MacroFab enables customers to upload their designs through the website, where they can then receive projected timeline and pricing information from the get go. The company has its own manufacturing area in its office for prototypes and small orders, but its network of large manufacturers is a key part of the MacroFab's growth equation.

The company has about 20 manufacturing plants as partners that can pick up manufacturing jobs from MacroFab customers when the plant has space on its lines up for grabs. Rather than let available capacity go to waste, these plants can easily pick up the design and materials to start production.

"It's not dissimilar to what Uber is doing with cars — there's a lot of people with cars that could give you a ride if they knew you were out there," Govshteyn says. "It's that matchmaking function is essentially what we're doing with our customers."

The manufacturing partners benefit from jobs they otherwise wouldn't have, and the MacroFab customers get access to a plant that they didn't have to do the legwork to find. Govshteyn says a he's heard horror stories from people who had orders that were unceremoniously dropped by a manufacturer because another one of its clients just placed a large order.

"That shouldn't happen. If a factory gets too busy, it should be easy enough to take that job and move it somewhere else," Govshteyn says. "But, right now, there's not a way to do that."

Using cloud technology, the MacroFab platform can easily share the design and translate it to any given factory, Church says. They also have a technology that combine smaller orders together so there's no wasted resources, which brings down the cost for the customer.

While usually a company might have to find a new manufacturer as they scale up and start making larger orders, MacroFab customers don't have to start from scratch to find a new plant that can take their order — MacroFab will do the matchmaking for them.

"We've created and are continuing to build a marketplace for excess manufacturing capacity," Church says.

MacroFab owns the customer experience and the sales aspect — ensuring a more positive and consistent experience — while the manufacturers can just take the jobs and go.

Scaling up
The manufacturing marketplace is a newer focus for MacroFab — the company just launched it in beta this year — and is a big proponent of the company's growth. Before, the company was limited to what it could produce in its own factory taking on prototype and small orders. Now, with access to the manufacturers, the company has served 1,700 customers, building 500,000 units for about 4,000 different products. Those figures, Church says, are scaling up so rapidly as they expand to new partners.

"This is the first quarter where more gets produced outside of our factory than inside of it," Govshteyn says. "By this time in Q1, 75 percent of our revenue will [come from outside manufacturing plants.]"

Since manufacturing plants haven't historically collaborated, Govshteyn says the reception from manufacturers has been "cautiously optimistic." But then they realize they are getting customers for free — all they have to do is meet the requirements and deliver on time, he says.

"It's great for them to see that their factory is only half used, but then they can fill it up with jobs from MacroFab," Govshteyn says.

Houston has been a great city for MacroFab with its port manufacturing and logistics, two things Govshteyn says MacroFab is focusing on.

"At the end of the day, we're a manufacturing company, and I think we'll dabble in logistics," he says. "There's a lot worse places to start a logistics-heavy company."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”