Baylor St. Luke's Hospital is using a new Bay Area technology to provide treatment to stroke patients. Photo courtesy Baylor St. Luke's

For neurologists and neurocritical care providers like Dr. Chethan Rao, medical director of Neuroscience ICU at Baylor St. Luke's Hospital, time is incredibly important when it comes to brain-related recoveries.

"For every minute that you don't treat a patient with a stroke, 2 million nerve cells die. In the normal aging process, you lose about 35,000 cells a year or so," Rao says. "In other words, you age about 10 years every minute you don't get a treatment for stroke."

This is why his team is using new technologies, softwares, and innovation to drastically reduce the time it takes to treat patients who've suffered from a stroke starting from the moment they enter through the doors of their hospital.

One of the latest advancements at Baylor St. Luke's is the adoption of the San Francisco-based artificial intelligence app called Viz.ai across its stroke care teams.

The app received FDA approval in February 2020 and uses deep learning algorithms to analyze CAT scans for suspected large vessel occlusion (LVO) strokes. Baylor purchased the software about a year ago and is the first Houston-area hospital to use artificial intelligence for this type of treatment.

Viz.ai instantly allows doctors to determine salvageable and unsalvageable brain tissue, creating what Dr. Rao describes as a "map" for any potential procedures. Determining the viability of this type of treatment traditionally would take about 15 to 20 minutes, according to Rao.

"That's the reason artificial intelligence and automated technology has become extremely important. Because the more you've reduced the time it's required to make decisions and to provide treatments for stroke, that benefit is humungous for the patient," he says.

Rao says that his team uses the software about every day and has treated roughly 140 stroke patients with guidance from the tool.

Next the hospital aims to connect Viz.ai with additional automated systems it has adopted to speed up processes for stroke patients and manage their care, including TigerConnect for internal HIPAA-approved messaging and Decisio, a Houston-based product that captures key time stamps.

And Rao adds that the hospital is researching ways to extend the use of Viz.ai for select patients—to salvage more brain matter and analyze additional neurological events.

"More exciting things will be coming out of it," he says. "We're also working on helping it analyze aneurysms, not just blockages. Can we locate the bleeds, so that we can create different alert systems and then create different treatment pathways immediately?"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.