Academics have learned quickly that investigations based on data from online research agencies can have problems. Here are those problems and alternatives, according to Rice University researchers. Photo via Getty Images

Academics are learning quickly that investigations based on data from online research agencies have their drawbacks. Thousands of such studies are released every year – and if the data is compromised, so too are the studies themselves.

So it’s natural for researchers, and the managers who rely on their findings, to be concerned about potential problems with the samples they’re studying. Among them: participants who aren’t in the lab and researchers who can’t see who is taking their survey, what they are doing while answering questions or even if they are who they claim to be online. In the wake of a 2018 media piece about Amazon’s Mechanical Turks Service, “Bots on Amazon’s MTurk Are Ruining Psychology Studies,” one psychology professor even mused, “I wonder if this is the end of MTurk research?” (It wasn’t).

To tackle this problem, Rice Business professor Mikki Hebl joined colleagues Carlos Moreno and Christy Nittrouer of Rice University along with several other colleagues to highlight the value of other research methods. Four alternatives – field experiments, archival data, observations and big data – represent smart alternatives to overreliance on online surveys. These methods also have the advantage of challenging academics to venture outside of their laboratories and examine real people and real data in the real world.

Field experiments have been around for decades. But their value is hard to overestimate. Unlike online studies, field experiments enhance the role of context, especially in settings that are largely uncontrolled. It’s hard to fake a field experiment in order to create positive results since each one costs a considerable time and money.

And field experiments can yield real-life results with remarkable implications for society at large. Consider one experiment among 56 middle schools in New Jersey, which found that spreading anti-conflict norms was hugely successful in reducing the need for disciplinary action. Such studies have an impact well beyond what could be achieved with a simple online survey.

The best way to get started with a good field experiment, Hebl and her colleagues wrote, is for researchers to think about natural field settings to which they have access, either personally or by leveraging their networks. Then, researchers should think about starting with the variables critical for any given setting and which they would most like to manipulate to observe the outcome. When choosing variables, it’s helpful to start by thinking about what variable might have conditions leading to the greatest degree of behavior change if introduced into the setting.

Archival data is another excellent way to work around the limitations of online surveys, the researchers argue. These data get around some of the critical drawbacks of field research, including problems around how findings apply in a more general way. Archival data, especially in the form of state or national level data sets, provide information and insight into a large, diverse set of samples that are more representative of the general population than online studies.

Archival data can also help answer questions that are either longitudinal or multilevel in nature, which can be particularly tricky or even impossible to capture with data collected by any single research team. As people spend increasing amounts of time on social media, the internet also serves as a source of newer forms of archival data that can lend unique insights into individuals’ thoughts, attitudes, and behaviors over time.

With every passing year, technology becomes increasingly robust and adept at collecting massive amounts of data on an endless variety of human behavior. For the scientists who research social and personality psychology, the term “big data” refers not only to very large sets of data but also to the tools and techniques that are used to analyze it. The three defining properties of Big Data in this context include the speed of data processing and collection, the vast amount of data being analyzed and the sheer variety of data available.

By using big data, social scientists can generate research based on various conditions, as well as collect data in natural settings. Big data also offers the opportunity to consolidate information from huge and highly diverse stores of data. This technology has many applications, including psychological assessments and improving security in airports and other transportation hubs. In future research, Hebl and her team noted, researchers will likely leverage big data and its applications to detect our unconscious emotions.

Big data, archival information and field studies can all be used in conjunction with each other to maximize the fidelity of research. But researchers shouldn’t forget even more old-fashioned techniques, including the oldest: keen observation. With observation, there are often very few, if any, manipulations and the goal is simply to systematically record the way people behave.

Researchers – and the managers who make decisions based on their findings – should consider the advantages of old-style, often underused methodologies, Hebl and her colleagues argue. Moving beyond the college laboratory and digital data survey-collection platforms and into the real world offers some unparalleled advantages to science. For the managers whose stock prices may hinge on this science, it’s worth knowing – and understanding – how your all-important data was gathered.

------

This article originally ran on Rice Business Wisdom and is based on research from Mikki Hebl, the Martha and Henry Malcolm Lovett Professor of psychology at Rice University, and Carlos Moreno and Christy Nittrouer, who are graduate students at Rice University. Additional researchers include Ho Kwan Cheung, Eden B. King, and Hannah Markellis of George Mason University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.