Academics have learned quickly that investigations based on data from online research agencies can have problems. Here are those problems and alternatives, according to Rice University researchers. Photo via Getty Images

Academics are learning quickly that investigations based on data from online research agencies have their drawbacks. Thousands of such studies are released every year – and if the data is compromised, so too are the studies themselves.

So it’s natural for researchers, and the managers who rely on their findings, to be concerned about potential problems with the samples they’re studying. Among them: participants who aren’t in the lab and researchers who can’t see who is taking their survey, what they are doing while answering questions or even if they are who they claim to be online. In the wake of a 2018 media piece about Amazon’s Mechanical Turks Service, “Bots on Amazon’s MTurk Are Ruining Psychology Studies,” one psychology professor even mused, “I wonder if this is the end of MTurk research?” (It wasn’t).

To tackle this problem, Rice Business professor Mikki Hebl joined colleagues Carlos Moreno and Christy Nittrouer of Rice University along with several other colleagues to highlight the value of other research methods. Four alternatives – field experiments, archival data, observations and big data – represent smart alternatives to overreliance on online surveys. These methods also have the advantage of challenging academics to venture outside of their laboratories and examine real people and real data in the real world.

Field experiments have been around for decades. But their value is hard to overestimate. Unlike online studies, field experiments enhance the role of context, especially in settings that are largely uncontrolled. It’s hard to fake a field experiment in order to create positive results since each one costs a considerable time and money.

And field experiments can yield real-life results with remarkable implications for society at large. Consider one experiment among 56 middle schools in New Jersey, which found that spreading anti-conflict norms was hugely successful in reducing the need for disciplinary action. Such studies have an impact well beyond what could be achieved with a simple online survey.

The best way to get started with a good field experiment, Hebl and her colleagues wrote, is for researchers to think about natural field settings to which they have access, either personally or by leveraging their networks. Then, researchers should think about starting with the variables critical for any given setting and which they would most like to manipulate to observe the outcome. When choosing variables, it’s helpful to start by thinking about what variable might have conditions leading to the greatest degree of behavior change if introduced into the setting.

Archival data is another excellent way to work around the limitations of online surveys, the researchers argue. These data get around some of the critical drawbacks of field research, including problems around how findings apply in a more general way. Archival data, especially in the form of state or national level data sets, provide information and insight into a large, diverse set of samples that are more representative of the general population than online studies.

Archival data can also help answer questions that are either longitudinal or multilevel in nature, which can be particularly tricky or even impossible to capture with data collected by any single research team. As people spend increasing amounts of time on social media, the internet also serves as a source of newer forms of archival data that can lend unique insights into individuals’ thoughts, attitudes, and behaviors over time.

With every passing year, technology becomes increasingly robust and adept at collecting massive amounts of data on an endless variety of human behavior. For the scientists who research social and personality psychology, the term “big data” refers not only to very large sets of data but also to the tools and techniques that are used to analyze it. The three defining properties of Big Data in this context include the speed of data processing and collection, the vast amount of data being analyzed and the sheer variety of data available.

By using big data, social scientists can generate research based on various conditions, as well as collect data in natural settings. Big data also offers the opportunity to consolidate information from huge and highly diverse stores of data. This technology has many applications, including psychological assessments and improving security in airports and other transportation hubs. In future research, Hebl and her team noted, researchers will likely leverage big data and its applications to detect our unconscious emotions.

Big data, archival information and field studies can all be used in conjunction with each other to maximize the fidelity of research. But researchers shouldn’t forget even more old-fashioned techniques, including the oldest: keen observation. With observation, there are often very few, if any, manipulations and the goal is simply to systematically record the way people behave.

Researchers – and the managers who make decisions based on their findings – should consider the advantages of old-style, often underused methodologies, Hebl and her colleagues argue. Moving beyond the college laboratory and digital data survey-collection platforms and into the real world offers some unparalleled advantages to science. For the managers whose stock prices may hinge on this science, it’s worth knowing – and understanding – how your all-important data was gathered.

------

This article originally ran on Rice Business Wisdom and is based on research from Mikki Hebl, the Martha and Henry Malcolm Lovett Professor of psychology at Rice University, and Carlos Moreno and Christy Nittrouer, who are graduate students at Rice University. Additional researchers include Ho Kwan Cheung, Eden B. King, and Hannah Markellis of George Mason University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.