Cemvita Factory is working on a pilot plant with Oxy to scale its biotechnology. Photo via OxyLowCarbon.com

Occidental's venture arm — Oxy Low Carbon Ventures — has announced its plans to construct and operate a one metric ton per month bio-ethylene pilot plant featuring Houston-based Cemvita Factory's technology that biomimics photosynthesis to convert carbon dioxide into feedstocks.

The new plant will scale the process, which was jointly developed between Cemvita and OLCV, and is expected sometime next year, according to a press release from Oxy.

"Today bio-ethylene is made from bio-ethanol, which is made from sugarcane, which in turn was created by photosynthesizing CO2. Our bio-synthetic process simply requires CO2, water and light to produce bio-ethylene, and that's why it saves a lot of cost and carbon emissions," says Moji Karimi, co-founder and CEO of Cemvita Factory, in the release. "This project is a great example of how Cemvita is applying industrial-strength synthetic biology to help our clients lower their carbon footprint while creating new revenue streams."

Oxy and Cemvita have been working together for a while, and in 2019, OLCV invested an undisclosed amount into the startup. The investment, according to the release, was made to jointly explore how these advances in synthetic biology can be used for sustainability efforts in the bio-manufacturing of OxyChem's products.

"This technology could provide an opportunity to offer a new, non-hydrocarbon-sourced ethylene product to the market, reducing carbon emissions, and in the future benefit our affiliate, OxyChem, which is a large producer and consumer of ethylene in its chlorovinyls business," says Robert Zeller, vice president of technology at OLCV, in a news release.

Moji Karimi founded the company with his sister and Cemvita CTO, Tara, in 2017. The idea was to biomimic photosynthesis to take CO2 and turn it into something else. The first iteration of the technology turned CO2 into sugar — the classic photosynthesis process. Karimi says the idea was to create this process for space, so that astronauts can turn the CO2 they breathe out into a calorie source.

"Nature provided the inspiration," noted Dr. Tara Karimi, co-founder and CTO of Cemvita Factory. "We took a gene from a banana and genetically engineered it into our CO2-utilizing host microorganism. We are now significantly increasing its productivity with the goal to achieve commercial metrics that we have defined alongside OLCV."

A couple weeks ago, Moji Karimi joined the Houston Innovators Podcast to discuss growth and challenges Cemvita Factory faced.

"We're defining this new category for application of synthetic biology in heavy industries for decarbonization," he shares on the show. Stream the episode below.

Moji Karimi, co-founder and CEO of Cemvita Factory, is offering energy execs an innovative way to meat their climate change pledge goals. Photo courtesy of Cemvita

Growing Houston biotech startup is capturing a new way for oil and gas to get to carbon negative

HOUSTON INNOVATORS PODCAST EPISODE 76

As more and more energy companies are focusing on reducing their carbon footprint ahead of lofty clean energy goals, Moji Karimi, CEO and co-founder of Houston-based Cemvita Factory, is doing his oil and gas clients one better. In addition to reducing carbon emissions, Cemvita provides an additional revenue stream for its clients.

Karimi founded the company with his sister and Cemvita CTO, Tara, in 2017. The idea was to biomimic photosynthesis to take CO2 and turn it into something else. The first iteration of the technology turned CO2 into sugar — the classic photosynthesis process. Karimi says the idea was to create this process for space, so that astronauts can turn the CO2 they breathe out into a calorie source.

"While we were doing that, we realized the big picture is not just the space application. If we could apply the same technology for other chemicals made in energy-intensive way, then we could actually help with climate change," Karimi says on the podcast.

Now, Cemvita has 30 different molecules its technology can produce and works with the likes of BHP, Oxy, and more energy clients to take their carbon emissions and turn it into something useful.

"It's not just for sustainability reasons — it's part of the reinvention of the company to maintain its legacy for the next few decades to come," Karimi adds.

While 2020 was a chance for Cemvita to reset, by Q4 of last year the company was in growth mode and got back to the lab. The company's teams were divided between two spots — one being an R&D team in larger office at JLABS @ TMC — and Karimi says later this year that will change. Cemvita is moving into a larger, combined space in Upper Kirby in May.

But Karimi says one of the biggest challenges Cemvita is facing is that its doing something that's never been done before. There's a huge learning curve for clients and oil and gas stakeholders.

"There weren't biotech companies working with oil and gas companies for this use case that we have now," Karimi says. "We're defining this new category for application of synthetic biology in heavy industries for decarbonization."

There are other companies in the carbon capture and neutralization fields, though they are taking slightly different approaches. Rather than being competitive, companies in this space are working together for a greater good.

"The more successful that some of these other companies are in opening up the market, that also helps us the same way we're doing for them," Karimi says. "It's an interesting and collaborative area, because at the end of the day, the outcome is good for the world."

Karimi shares more about what Cemvita's growth plans on the episode. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”

Rice Alliance and the Ion leader Brad Burke to retire this summer

lasting legacy

Brad Burke—a Rice University associate vice president who leads the Ion District’s Rice Alliance for Technology and Entrepreneurship and is a prominent figure in Houston’s startup community—is retiring this summer after a 25-year career at the university.

Burke will remain at the Rice Alliance as an adviser until his retirement on June 30.

“Brad’s impact on Rice extends far beyond any single program or initiative. He grew the Rice Alliance from a promising campus initiative into one of the most respected university-based entrepreneurship platforms,” Rice President Reginald DesRoches said in a news release.

During Burke’s tenure, the Rice Business School went from unranked in entrepreneurship to The Princeton Review’s No. 1 graduate entrepreneurship program for the past seven years and a top 20 entrepreneurship program in U.S. News & World Report’s rankings for the past 14 years.

“Brad didn’t just build programs — he built an ecosystem, a culture, and a reputation for Rice that now resonates around the world,” said Peter Rodriguez, dean of the business school. “Through his vision and steady leadership, Rice became a place where founders are taken seriously, ideas are rigorously supported, and entrepreneurship is embedded in the fabric of the university.”

One of Burke’s notable achievements at Rice is the creation of the Rice Business Plan Competition. During his tenure, the competition has grown from nine student teams competing for $10,000 into the world’s largest intercollegiate competition for student-led startups. Today, the annual competition welcomes 42 student-led startups that vie for more than $1 million in prizes.

Away from Rice, Burke has played a key role in cultivating entrepreneurship in the energy sector: He helped establish the Energy Tech Venture Forum along with Houston Energy and Climate Startup Week.

Furthermore, Burke co-founded the Texas University Network for Innovation and Entrepreneurship in 2008 to bolster the entrepreneurship programs at every university in Texas. In 2016, the Rice Alliance assumed leadership of the Global Consortium of Entrepreneurship Centers.

In 2023, Burke received the Trailblazer Award at the 2023 Houston Innovation Awards and was recognized by the Deshpande Foundation for his contributions to innovation and entrepreneurship in higher education.

“Working with an amazing team to build the entrepreneurial ecosystem at Rice, in Houston, and beyond has been the privilege of my career,” Burke said in the release. “It has been extremely gratifying to hear entrepreneurs say our efforts changed their lives, while bringing new innovations to market. The organization is well-positioned to help drive exponential growth across startups, investors, and the entrepreneurial ecosystem.”

Starting April 15, John “JR” Reale Jr. will serve as interim associate vice president at Rice and executive director of the Rice Alliance. He is managing director of the alliance and co-founder of Station Houston, beginning April 15. Reale is co-founder of the Station Houston startup hub and a startup investor and was also recently named director for startups and investor engagement for the Ion.

“The Rice Alliance has always been about helping founders gain advantages to realize their visions,” Reale said. “Under Brad’s leadership, the Rice Alliance has become a globally recognized platform that is grounded in trust and drives transformational founder outcomes. My commitment is to honor what Brad has built and led while continuing to serve our team and community, deepen relationships and deliver impact.”

Burke joined the Houston Innovators Podcast back in 2022. Listen to the full interview here.

Houston team uses CPRIT funding to develop nanodrug for cancer immunotherapy

cancer research

With a relative five-year survival rate of 50 percent, pancreatic cancer is a diagnosis nobody wants. At 60 percent, the prognosis for lung cancer isn’t much rosier. That’s because both cancers contain regulatory B cells (Bregs), which block the body’s natural immunity, making it harder to fight the enemies within.

Newly popular immunotherapies in a category known as STING agonists may stimulate natural cancer defenses. However, they can also increase Bregs while simultaneously causing significant side effects. But Wei Gao, assistant professor of pharmacology at the University of Houston College of Pharmacy, may have a solution to that conundrum.

Gao and her team have developed Nano-273, a dual-function drug, packaged in an albumin-based particle, that boosts the immune system to help it better fight pancreatic and lung cancers. Gao’s lab recently received a $900,000 grant from the Cancer Prevention and Research Institute of Texas (CPRIT) to aid in fueling her research into the nanodrug.

“Nano-273 both activates STING and blocks PI3Kγ—a pathway that drives Breg expansion, while albumin nanoparticles help deliver the drug directly to immune cells, reducing unwanted side effects,” Gao said in a press release. “This approach reduces harmful Bregs while boosting immune cells that attack cancer, leading to stronger and more targeted anti-tumor responses.”

In studies using models of both pancreatic and lung cancers, Nano-273 has shown great promise with low toxicity. Its best results thus far have involved using the drug in combination with immunotherapy or chemotherapy.

With the CPRIT funds, Gao and her team will be able to charge closer to clinical use with a series of important steps. Those include continuing to test Nano-273 alongside other drugs, including immune checkpoint inhibitors. Safety studies will follow, but with future patients in mind, Gao will also work toward improving her drug’s production, making sure that it’s safe and high-quality every time, so that it is eventually ready for trials.

Gao added: “If successful, this project could lead to a new type of immunotherapy that offers lasting tumor control and improved survival for patients with pancreatic and lung cancers, two diseases that urgently need better treatments."