A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Vicki Hollub, president and CEO of Occidental, said the company's Stratos DAC project is on track to begin capturing CO2 later this year. Photo via 1pointfive.com

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.


HYCO1 has signed an agreement to convert 1 million tons per year of raw CO2 into industrial-grade syngas at a new carbon capture project in Malaysia. Getty Images

Houston climatech co. to lead one of world's largest carbon capture projects

Big Deal

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.

Houston-based CO2 Energy Transition Corp., a SPAC focused on carbon capture, utilization, and storage (CCUS), raised $69 million in its IPO to target mid-sized CCUS companies. Photo via Getty Images

Houston energy transition tech SPAC goes public through IPO

BLANK CHECK

Houston-based CO2 Energy Transition Corp. — a “blank check” company initially targeting the carbon capture, utilization, and storage (CCUS) sector — closed November 22 on its IPO, selling 6 million units at $10 apiece.

“Blank check” companies are formally known as special purpose acquisition companies (SPACs). A SPAC aims to complete a merger, acquisition, share exchange, share purchase, reorganization or similar business combination in certain business sectors. CO2 Energy Transition will target companies valued at $150 million to $250 million.

Each CO2 Energy Transition unit consists of one share of common stock, one warrant to purchase one share of common stock at a per-share price of $11.50, and the right to receive one-eighth of a share of common stock based on certain business conditions being met.

The IPO also included the full exercise of the underwriter’s option to buy 900,000 units to cover over-allotments. Kingswood Capital Partners LLC was the sole underwriter.

Gross proceeds from the IPO totaled $69 million. The money will enable the company to pursue CCUS opportunities.

“Recent bipartisan support for carbon capture legislation heavily emphasized the government’s willingness to advance and support technologies for carbon capture, utilization, storage, and other purposes as efforts to reduce greenhouse gas emissions [continue],” Co2 Energy Transition says in an October 2024 filing with the U.S. Securities and Exchange Commission (SEC).

Brady Rogers is president and CEO of CO2 Energy Transition. He also is CEO of Carbon Capture Development Co., a Los Angeles-based developer of direct air capture (DAC) technology, and president of Houston-based Antelope Energy Partners LLC, a provider of oil and gas services.

------

This article originally ran on EnergyCapital.

If we want to see real change, we need action by all parties. Photo via Getty Images

Texas vs the nation: Comparing energy grid resilience across America

guest column

The 2024 Atlantic hurricane season has proven disastrous for the United States. On July 8th, Hurricane Beryl barreled into Texas as a Category 1 storm knocking out power for nearly 3 million, causing over $2.5 billion in damages, and resulting in the deaths of at least 42 people.

More recently, Hurricanes Helene and Milton tore through the East Coast, dropping trillions of gallons of rain on Florida, Georgia, South Carolina, North Carolina, Virginia, and Tennessee, causing dams to collapse, flash flooding, trees to fall, millions of power outages, complete destruction of homes and businesses, and the deaths of hundreds.

Amidst the horror and rescue efforts, wariness of the increasing strength of natural disasters, and repeated failures of energy grids around the nation begs a few questions.

  1. Is there a version of a power grid that can better endure hurricanes, heat waves, and freezes?
  2. How does the Texas grid compare to other regional grids in the United States?
  3. What can we do to solve our power grid problems and who is responsible for implementing these solutions?

Hurricane-proof grids do not exist

There is no version of a grid anywhere in the United States that can withstand the brunt of a massive hurricane without experiencing outages.

The wind, rain, and flooding are simply too much to handle.

Some might wonder, “What if we buried the power lines?” Surely, removing the power lines from the harsh winds, rain, flying debris, and falling tree branches would be enough to keep the lights on, right?

Well, not necessarily. Putting aside the fact that burying power lines is incredibly expensive – estimates range from thousands to millions of dollars per mile buried – extended exposure to water from flood surges can still cause damage to buried lines. To pile on further, flood surges are likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

Heat waves and winter freezes are a different story

During extreme weather events like heat waves or winter freezes, the strain on the grid goes beyond simple issues of generation and distribution—it’s also a matter of human behavior and grid limitations.

Building and maintaining a power grid is extremely expensive, and storing electricity is not only costly but technically challenging. Most grids are designed with little "buffer" capacity to handle peak demand moments, because much of the infrastructure sits idle during normal conditions. Imagine investing billions of dollars in a power plant or wind farm that only operates at full capacity a fraction of the time. It’s difficult to recoup that investment.

When extreme weather hits, demand spikes significantly while supply remains relatively static, pushing the grid to its limits. This imbalance makes it hard to keep up with the surge in energy usage.

At the same time, our relationship with electricity has changed—our need for electricity has only increased. We’ve developed habits—like setting thermostats to 70 degrees or lower during summer heat waves or keeping homes balmy in winter— that, while comfortable, place additional strain on the system.

Behavioral changes, alongside investments in infrastructure, are crucial to ensuring we avoid blackouts as energy demand continues to rise in the coming years.

How the Texas grid compares to other regional grids

Is the Texas grid really in worse shape compared to other regional grids around the U.S.?

In some ways, Texas is lagging and in others, Texas is a leader.

One thing you might have heard about the Texas grid is that it is isolated, which restricts the ability to import power from neighboring regions during emergencies. Unfortunately, connecting the Texas grid further would not be a one-size fits all solution for fixing its problems. The neighboring grids would need to have excess supply at the exact moment of need and have the capacity to transmit that power to the right areas of need. Situations often arise where the Texas grid needs more power, but New Mexico, Oklahoma, Arkansas, and Louisiana have none to spare because they are experiencing similar issues with supply and demand at the same time. Furthermore, even if our neighbors have some power to share, the infrastructure may not be sufficient to deliver the power where it’s needed within the state.

On the other hand, Texas is leading the nation in terms of renewable development. The Lone Star State is #1 in wind power and #2 in solar power, only behind California. There are, of course, valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries.

Yet, the only state with more utility-scale storage than Texas is California.

In recent years, ERCOT has pushed generators and utility companies to increase their winterization efforts, incentivize the buildout of renewables and electricity storage. You might have also heard about the Texas Electricity Fund, which represents the state’s latest effort to further incentivize grid stability. Improvements are underway, but they may not be enough if homeowners and renters across the state are unwilling to set their thermostats a bit higher during extended heatwaves.

How can we fix the Texas grid?

Here’s the reality we must face – a disaster-proof, on-demand, renewable-powered grid is extremely expensive and cannot be implemented quickly. We must come to terms with the fact that the impact of natural disasters is unavoidable, no matter how much we “upgrade” the infrastructure.

Ironically, the most impactful solution out there is free and requires only a few seconds to implement. Simple changes to human behavior are the strongest tool we have at our disposal to prevent blackouts in Texas. By decreasing our collective demand for electricity at the right times, we can all help keep the lights on and prices low.

During peak hours, the cumulative effort is as simple as turning off the lights, turning the thermostat up a few degrees, and running appliances like dishwashers and laundry machines overnight.

Another important element we cannot avoid addressing is global warming. As the temperatures on the surface of the earth increase, the weather changes, and, in many cases, it makes it more volatile.

The more fossil fuels we burn, the more greenhouse gases are released into the atmosphere. More greenhouse gases in the atmosphere leads to more volatile weather. Volatile weather, in turn, contributes to extreme grid strain in the form of heat waves, winter freezes, and hurricanes. This is no simple matter to solve, because the energy needs and capabilities of different countries differ. That is why some countries around the globe continue to expand their investments in coal as an energy source, the fossil fuel that burns the dirtiest and releases the most greenhouse gases per unit.

While governments and private organizations continue to advance carbon capture, renewable, and energy storage technology efficiency, the individual could aid these efforts by changing our behavior. There are many impactful things we can do to reduce our carbon footprint, like adjusting our thermostat a few degrees, eating less red meat, driving cars less often, and purchasing fewer single-use plastics to name a few.

If we want to see real change, we need action by all parties. The complex system of generation, transmission, and consumption all need to experience radical change, or the vicious cycle will only continue.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston biotech co. raises $11M to advance ALS drug development

drug money

Houston-based clinical-stage biotechnology company Coya Therapeutics (NASDAQ: COYA) has raised $11.1 million in a private investment round.

India-based pharmaceuticals company Dr. Reddy’s Laboratories Inc. led the round with a $10 million investment, according to a news release. New York-based investment firm Greenlight Capital, Coya’s largest institutional shareholder, contributed $1.1 million.

The funding was raised through a definitive securities purchase agreement for the purchase and sale of more than 2.5 million shares of Coya's common stock in a private placement at $4.40 per share.

Coya reports that it plans to use the proceeds to scale up manufacturing of low-dose interleukin-2 (IL-2), which is a component of its COYA 302 and will support the commercial readiness of the drug. COYA 302 enhances anti-inflammatory T cell function and suppresses harmful immune activity for treatment of Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), Parkinson’s disease and Alzheimer’s disease.

The company received FDA acceptance for its investigational new drug application for COYA 302 for treating ALS and FTD this summer. Its ALSTARS Phase 2 clinical trial for ALS treatment launched this fall in the U.S. and Canada and has begun enrolling and dosing patients. Coya CEO Arun Swaminathan said in a letter to investors that the company also plans to advance its clinical programs for the drug for FTD therapy in 2026.

Coya was founded in 2021. The company merged with Nicoya Health Inc. in 2020 and raised $10 million in its series A the same year. It closed its IPO in January 2023 for more than $15 million. Its therapeutics uses innovative work from Houston Methodist's Dr. Stanley H. Appel.

New accelerator for AI startups to launch at Houston's Ion this spring

The Collectiv Foundation and Rice University have established a sports, health and wellness startup accelerator at the Ion District’s Collectiv, a sports-focused venture capital platform.

The AI Native Dual-Use Sports, Health & Wellness Accelerator, scheduled to formally launch in March, will back early-stage startups developing AI for the sports, health and wellness markets. Accelerator participants will gain access to a host of opportunities with:

  • Mentors
  • Advisers
  • Pro sports teams and leagues
  • University athletics programs
  • Health care systems
  • Corporate partners
  • VC firms
  • Pilot projects
  • University-based entrepreneurship and business initiatives

Accelerator participants will focus on sports tech verticals inlcuding performance and health, fan experience and media platforms, data and analytics, and infrastructure.

“Houston is quickly becoming one of the most important innovation hubs at the intersection of sports, health, and AI,” Ashley DeWalt, co-founder and managing partner of The Collectiv and founder of The Collectiv Foundation, said in a news release.

“By launching this platform with Rice University in the Ion District,” he added, “we are building a category-defining acceleration engine that gives founders access to world-class research, global sports properties, hospital systems, and venture capital. This is about turning sports-validated technology into globally scalable companies at a moment when the world’s attention is converging on Houston ahead of the 2026 World Cup.”

The Collectiv accelerator will draw on expertise from organizations such as the Rice-Houston Methodist Center for Human Performance, Rice Brain Institute, Rice Gateway Project and the Texas Medical Center.

“The combination of Rice University’s research leadership, Houston’s unmatched health ecosystem, and The Collectiv’s operator-driven investment platform creates a powerful acceleration engine,” Blair Garrou, co-founder and managing partner of the Mercury Fund VC firm and a senior adviser for The Collectiv, added in the release.

Additional details on programming, partners and application timelines are expected to be announced in the coming weeks.

4 Houston-area schools excel with best online degree programs in U.S.

Top of the Class

Four Houston-area universities have earned well-deserved recognition in U.S. News & World Report's just-released rankings of the Best Online Programs for 2026.

The annual rankings offer insight into the best American universities for students seeking a flexible and affordable way to attain a higher education. In the 2026 edition, U.S. News analyzed nearly 1,850 online programs for bachelor's degrees and seven master's degree disciplines: MBA, business (non-MBA), criminal justice, education, engineering, information technology, and nursing.

Many of these local schools are also high achievers in U.S. News' separate rankings of the best grad schools.

Rice University tied with Texas A&M University in College Station for the No. 3 best online master's in information technology program in the U.S., and its online MBA program ranked No. 21 nationally.

The online master's in nursing program at The University of Texas Medical Branch in Galveston was the highest performing master's nursing degree in Texas, and it ranked No. 19 nationally.

Three different programs at The University of Houston were ranked among the top 100 nationwide:
  • No. 18 – Best online master's in education
  • No. 59 – Best online master's in business (non-MBA)
  • No. 89 – Best online bachelor's program
The University of Houston's Clear Lake campus ranked No. 65 nationally for its online master's in education program.

"Online education continues to be a vital path for professionals, parents, and service members seeking to advance their careers and broaden their knowledge with necessary flexibility," said U.S. News education managing editor LaMont Jones in a press release. "The 2026 Best Online Programs rankings are an essential tool for prospective students, providing rigorous, independent analysis to help them choose a high-quality program that aligns with their personal and professional goals."

A little farther outside Houston, two more universities – Sam Houston State University in Huntsville and Texas A&M University in College Station – stood out for their online degree programs.

Sam Houston State University

  • No. 5 – Best online master's in criminal justice
  • No. 30 – Best online master's in information technology
  • No. 36 – Best online master's in education
  • No. 77 – Best online bachelor's program
  • No. 96 – Best online master's in business (non-MBA)
Texas A&M University
  • No. 3 – Best online master's in information technology (tied with Rice)
  • No. 3 – Best online master's in business (non-MBA)
  • No. 8 – Best online master's in education
  • No. 9 – Best online master's in engineering
  • No. 11 – Best online bachelor's program
---

This article originally appeared on CultureMap.com.