HYCO1 has signed an agreement to convert 1 million tons per year of raw CO2 into industrial-grade syngas at a new carbon capture project in Malaysia. Getty Images

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.

Houston-based CO2 Energy Transition Corp., a SPAC focused on carbon capture, utilization, and storage (CCUS), raised $69 million in its IPO to target mid-sized CCUS companies. Photo via Getty Images

Houston energy transition tech SPAC goes public through IPO

BLANK CHECK

Houston-based CO2 Energy Transition Corp. — a “blank check” company initially targeting the carbon capture, utilization, and storage (CCUS) sector — closed November 22 on its IPO, selling 6 million units at $10 apiece.

“Blank check” companies are formally known as special purpose acquisition companies (SPACs). A SPAC aims to complete a merger, acquisition, share exchange, share purchase, reorganization or similar business combination in certain business sectors. CO2 Energy Transition will target companies valued at $150 million to $250 million.

Each CO2 Energy Transition unit consists of one share of common stock, one warrant to purchase one share of common stock at a per-share price of $11.50, and the right to receive one-eighth of a share of common stock based on certain business conditions being met.

The IPO also included the full exercise of the underwriter’s option to buy 900,000 units to cover over-allotments. Kingswood Capital Partners LLC was the sole underwriter.

Gross proceeds from the IPO totaled $69 million. The money will enable the company to pursue CCUS opportunities.

“Recent bipartisan support for carbon capture legislation heavily emphasized the government’s willingness to advance and support technologies for carbon capture, utilization, storage, and other purposes as efforts to reduce greenhouse gas emissions [continue],” Co2 Energy Transition says in an October 2024 filing with the U.S. Securities and Exchange Commission (SEC).

Brady Rogers is president and CEO of CO2 Energy Transition. He also is CEO of Carbon Capture Development Co., a Los Angeles-based developer of direct air capture (DAC) technology, and president of Houston-based Antelope Energy Partners LLC, a provider of oil and gas services.

------

This article originally ran on EnergyCapital.

If we want to see real change, we need action by all parties. Photo via Getty Images

Texas vs the nation: Comparing energy grid resilience across America

guest column

The 2024 Atlantic hurricane season has proven disastrous for the United States. On July 8th, Hurricane Beryl barreled into Texas as a Category 1 storm knocking out power for nearly 3 million, causing over $2.5 billion in damages, and resulting in the deaths of at least 42 people.

More recently, Hurricanes Helene and Milton tore through the East Coast, dropping trillions of gallons of rain on Florida, Georgia, South Carolina, North Carolina, Virginia, and Tennessee, causing dams to collapse, flash flooding, trees to fall, millions of power outages, complete destruction of homes and businesses, and the deaths of hundreds.

Amidst the horror and rescue efforts, wariness of the increasing strength of natural disasters, and repeated failures of energy grids around the nation begs a few questions.

  1. Is there a version of a power grid that can better endure hurricanes, heat waves, and freezes?
  2. How does the Texas grid compare to other regional grids in the United States?
  3. What can we do to solve our power grid problems and who is responsible for implementing these solutions?

Hurricane-proof grids do not exist

There is no version of a grid anywhere in the United States that can withstand the brunt of a massive hurricane without experiencing outages.

The wind, rain, and flooding are simply too much to handle.

Some might wonder, “What if we buried the power lines?” Surely, removing the power lines from the harsh winds, rain, flying debris, and falling tree branches would be enough to keep the lights on, right?

Well, not necessarily. Putting aside the fact that burying power lines is incredibly expensive – estimates range from thousands to millions of dollars per mile buried – extended exposure to water from flood surges can still cause damage to buried lines. To pile on further, flood surges are likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

Heat waves and winter freezes are a different story

During extreme weather events like heat waves or winter freezes, the strain on the grid goes beyond simple issues of generation and distribution—it’s also a matter of human behavior and grid limitations.

Building and maintaining a power grid is extremely expensive, and storing electricity is not only costly but technically challenging. Most grids are designed with little "buffer" capacity to handle peak demand moments, because much of the infrastructure sits idle during normal conditions. Imagine investing billions of dollars in a power plant or wind farm that only operates at full capacity a fraction of the time. It’s difficult to recoup that investment.

When extreme weather hits, demand spikes significantly while supply remains relatively static, pushing the grid to its limits. This imbalance makes it hard to keep up with the surge in energy usage.

At the same time, our relationship with electricity has changed—our need for electricity has only increased. We’ve developed habits—like setting thermostats to 70 degrees or lower during summer heat waves or keeping homes balmy in winter— that, while comfortable, place additional strain on the system.

Behavioral changes, alongside investments in infrastructure, are crucial to ensuring we avoid blackouts as energy demand continues to rise in the coming years.

How the Texas grid compares to other regional grids

Is the Texas grid really in worse shape compared to other regional grids around the U.S.?

In some ways, Texas is lagging and in others, Texas is a leader.

One thing you might have heard about the Texas grid is that it is isolated, which restricts the ability to import power from neighboring regions during emergencies. Unfortunately, connecting the Texas grid further would not be a one-size fits all solution for fixing its problems. The neighboring grids would need to have excess supply at the exact moment of need and have the capacity to transmit that power to the right areas of need. Situations often arise where the Texas grid needs more power, but New Mexico, Oklahoma, Arkansas, and Louisiana have none to spare because they are experiencing similar issues with supply and demand at the same time. Furthermore, even if our neighbors have some power to share, the infrastructure may not be sufficient to deliver the power where it’s needed within the state.

On the other hand, Texas is leading the nation in terms of renewable development. The Lone Star State is #1 in wind power and #2 in solar power, only behind California. There are, of course, valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries.

Yet, the only state with more utility-scale storage than Texas is California.

In recent years, ERCOT has pushed generators and utility companies to increase their winterization efforts, incentivize the buildout of renewables and electricity storage. You might have also heard about the Texas Electricity Fund, which represents the state’s latest effort to further incentivize grid stability. Improvements are underway, but they may not be enough if homeowners and renters across the state are unwilling to set their thermostats a bit higher during extended heatwaves.

How can we fix the Texas grid?

Here’s the reality we must face – a disaster-proof, on-demand, renewable-powered grid is extremely expensive and cannot be implemented quickly. We must come to terms with the fact that the impact of natural disasters is unavoidable, no matter how much we “upgrade” the infrastructure.

Ironically, the most impactful solution out there is free and requires only a few seconds to implement. Simple changes to human behavior are the strongest tool we have at our disposal to prevent blackouts in Texas. By decreasing our collective demand for electricity at the right times, we can all help keep the lights on and prices low.

During peak hours, the cumulative effort is as simple as turning off the lights, turning the thermostat up a few degrees, and running appliances like dishwashers and laundry machines overnight.

Another important element we cannot avoid addressing is global warming. As the temperatures on the surface of the earth increase, the weather changes, and, in many cases, it makes it more volatile.

The more fossil fuels we burn, the more greenhouse gases are released into the atmosphere. More greenhouse gases in the atmosphere leads to more volatile weather. Volatile weather, in turn, contributes to extreme grid strain in the form of heat waves, winter freezes, and hurricanes. This is no simple matter to solve, because the energy needs and capabilities of different countries differ. That is why some countries around the globe continue to expand their investments in coal as an energy source, the fossil fuel that burns the dirtiest and releases the most greenhouse gases per unit.

While governments and private organizations continue to advance carbon capture, renewable, and energy storage technology efficiency, the individual could aid these efforts by changing our behavior. There are many impactful things we can do to reduce our carbon footprint, like adjusting our thermostat a few degrees, eating less red meat, driving cars less often, and purchasing fewer single-use plastics to name a few.

If we want to see real change, we need action by all parties. The complex system of generation, transmission, and consumption all need to experience radical change, or the vicious cycle will only continue.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article originally ran on EnergyCapital.

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. Photo via Getty Images

Expert: How to best repurpose Houston’s infrastructure for a clean energy future

guest column

Houston, often dubbed the “Energy Capital of the World,” is at a pivotal moment in its history. Known for its vast oil and gas reserves, the city is now embracing a new role as a leader in the clean energy transition. This shift is not just about adopting new technologies but also about creatively repurposing existing infrastructure to support sustainable energy solutions.

Houston’s offshore oil wells, many of which are old or abandoned, present a significant opportunity for carbon capture. By repurposing these wells, we can sequester carbon dioxide, reducing greenhouse gas emissions and mitigating climate change. This approach not only utilizes existing infrastructure but also provides a cost-effective solution for carbon management. According to the Greater Houston Partnership, initiatives like these are crucial as Houston aims to lower its climate-changing greenhouse gas emissions. Exxon estimates that just their proposed CCS hub could capture and store 50 million metric tons of CO2 annually by 2030 and 100 million metric tons by 2040.

The proximity of abandoned offshore platforms to the coast makes them ideal candidates for renewable energy substations. These platforms can be transformed into hubs for wind, solar or tidal energy, facilitating the integration of renewable energy into the grid. This repurposing not only maximizes the use of existing structures but also minimizes environmental disruption.

Decommissioned pipelines, which are already in place, offer a ready-made solution for routing renewable energy cables. By using these existing rights of way, Houston can avoid disturbing additional seafloor and reduce the environmental impact of new cable installations. This strategy ensures a smoother transition to renewable energy infrastructure. The U.S. Energy Information Administration notes that Texas, including Houston, leads the nation in wind-generated electricity, highlighting the potential for further renewable energy development.

Onshore oil and gas facilities in Houston also hold potential for clean energy repurposing. Wells that were drilled but never used for oil or gas can be adapted for geological thermal energy storage. This process involves storing excess renewable energy in the form of heat, which can be retrieved when needed, providing a reliable and sustainable energy source. This innovative use of existing wells aligns with Houston’s broader energy transition strategy, which aims to leverage the city’s industrial expertise for a low-carbon future.

Once the land has been remediated, old and abandoned oil fields can be converted into solar farms. This transformation not only provides a new use for previously contaminated land but also contributes to the generation of clean, renewable energy. Solar farms on these sites can help meet Houston’s energy needs while supporting environmental restoration. The Environmental Protection Agency in recent years recognized Houston as the top city in the U.S. for green energy usage, with annual green power usage topping 1 billion kilowatt-hours in 2021.

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. By repurposing existing infrastructure, we can create a sustainable energy landscape that honors the city’s industrial past while paving the way for a greener tomorrow. These strategies highlight the potential for Houston to lead in the clean energy transition, setting an example for cities worldwide.

———

Tershara Mathews is the national offshore wind lead at WSP.

This article originally ran on EnergyCapital.


A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice.edu

New program to produce innovative, sustainability-focused workforce for energy industry

coming this fall

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

------

This article originally ran on EnergyCapital.

For the 2023 budget year, Texas’ total pot of federal money ranked second behind California’s. Photo via Getty Images

Texas attracts big percentage of government clean energy investment, says 2023 report

by the numbers

On a per-person basis, Texas grabbed the third-highest share of federal investment in clean energy and transportation during the government’s 2023 budget year, according to a new report.

Texas’ haul — $6.2 billion in federal investments, such as tax credits and grants — from October 1, 2022, to September 30, 2023, worked out to $204 per person, bested only by Wyoming ($369) and New Mexico ($259). That’s according to the latest Clean Investment Monitor report shows. Rhodium Group and MIT’s Center for Energy and Environmental Policy Research produced the report.

For the 2023 budget year, Texas’ total pot of federal money ranked second behind California’s ($7.5 billion), says the report. Nationwide, the federal government’s overall investment in clean energy and transportation reached $34 billion.

Other highlights of the report include:

  • Public and private investment in clean energy and transportation soared to $239 billion in 2023, up 37 percent from the previous year.
  • Overall investment in utility-scale solar power and storage systems climbed to $53 billion in 2023, up more than 50 percent from the previous year.
  • Overall investment in emerging climate technologies (clean energy, sustainable aviation fuel, and carbon capture) during 2023 surpassed investment in wind energy for the first time. This pool of money expanded from $900 million in 2022 to $9.1 billion in 2023.

The Lone Star arm of the pro-environment Sierra Club says the federal Inflation Reduction Act, which took effect in 2022, “includes a dizzying number of programs and tax incentives” for renewable energy.

“While it will take several years for all the programs to be implemented, billions in tax incentives and tax breaks, along with specific programs focused on clean energy development, energy efficiency, onsite solar, and transmission upgrades, means that Texas could help lower costs and transform our electric grid,” says the Sierra Club.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”