OncoResponse in partnership with MD Anderson Cancer Center received a portion of $73 million the Cancer Prevention and Research Institute of Texas has doled out this spring. Photo via oncoresponse.com

A biotech company has landed a more than $13 million grant from the Cancer Prevention and Research Institute of Texas.

The nearly $13.3 million grant given to OncoResponse — which is relocating from Seattle to Houston, according to CPRIT's news release — will help the company develop fully human monoclonal antibodies for treatment of cancer that otherwise would not respond to immunotherapy. OncoResponse already has a partnership with MD Anderson Cancer Center, which is one of the company’s investors.

“We are thrilled to receive this recognition from CPRIT in supporting the potential of our immunotherapy candidate OR502. We greatly appreciate the additional support from our investors as we continue to make significant progress with our drug development efforts advancing immunotherapies derived from clues of Elite Responders,” says Clifford Stocks, CEO of OncoResponse, in a news release.

Aside from the grant, OncoResponse just hauled in $14 million from existing investors in a round led by RiverVest Venture Partners. Other participants in the series D round include Venture Partners, Canaan Partners, 3B Future Health Fund, Bering Capital, Takeda Ventures, and InterVest Capital Partners.

To date, OncoResponse has raised more than $180 million, according to market research company CB Insights.

A representative of OncoResponse couldn’t be reached for comment about the company’s relocation to Houston.

MD Anderson and Seattle-based Theraclone Sciences launched OncoResponse in 2015. Rice University was among the inaugural investors.

OncoResponse’s OR2805 immunotherapy product is being evaluated in a Phase 1 clinical trial. It’s the company’s leading immunotherapy candidate. OncoResponse is also working on OR502, an antibody being prepared for investigational and clinical studies.

“The modern treatment of cancer activates the body’s own immune system to attack cancer,” OncoResponse says in a summary posted on the website of the Cancer Prevention and Research Institute of Texas (CPRIT).

“These treatments, called immunotherapy, may not be successful if the cancer can recruit bad-acting cells, such as tumor associated macrophages, or TAMs, that create barriers preventing immunotherapies from activating the body’s own defenses against the cancer. To find drugs that may help counteract these TAMs, OncoResponse looked to patients who had responded very well to immunotherapy to see if their bodies made factors to block TAMs and helped them fight their cancers.”

OncoResponse’s OR502 prevents TAMs from shutting down the body’s response to cancer, thus restoring tumor-killing immune activity, CPRIT explains.

In addition to OncoResponse, recent CPRIT grant recipients from the Houston area are:

  • Houston-based 7 Hills Pharma, $13,439,001. The company is working on immunotherapies for treatment of cancer and prevention of infectious diseases.
  • Houston-based Allterum Therapeutics, $11,721,150. The company is coming up with an antibody for treatment of patients with acute lymphoblastic leukemia. This type of cancer affects blood and bone marrow.
  • Houston-based Cell Therapy Manufacturing Center, $9.1 million. The center is a joint venture between National Resilience and MD Anderson Cancer Center that is developing cell therapy manufacturing technologies to support biotech partnerships.
  • Houston-based Pulmotect, $8,851,165. The company’s PUL-042 product is aimed at treating and preventing respiratory complications in cancer patients.
  • Cancer researcher Michael King, $6 million. The grant helped lure King to Rice from Nashville’s Vanderbilt University, where he’s been the chair of biomedical engineering. King’s lab at Vanderbilt has been testing therapies for metastatic breast cancer and prostate cancer.
  • Missouri City-based OmniNano Pharmaceuticals, $2,711,437. The pharmatech company is working on two drugs for treatment of solid tumors in patients with pancreatic cancer.

“Texas is unique because of CPRIT’s ability to invest in cutting-edge research when private capital is scarce. This is yet another way Texas is leading the nation in the fight against cancer,” Wayne Roberts, CEO of CPRIT, says in a news release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.