A Houston-based biotech company has completed early testing for its groundbreaking insulin alternative and is headed toward clinical trials. Photo via Getty Images

A Houston biotech startup is one step closer to releasing its marquee drug for the global insulin market, which is projected to break the $90 billion threshold by 2029.

rBIO says it recently completed testing of the properties of R-biolin, an insulin drug that’s biologically identical to Novo Nordisk’s Novolin drug. The patent for Novolin about two decades ago. In March 2023, the Dutch drugmaker announced it was slashing the list price of Novolin by 65 percent to $48.20 per vial and $91.09 per FlexPen.

Executives at rBIO are now pursuing a partnership with a contract research organization to manage clinical trials of R-biolin. If those trials go well, R-biolin will seek approval to supply its insulin therapy to diabetes patients around the world.

Washington University in St. Louis is rBIO’s academic partner for the R-biolin project.

The rBIO platform produces insulin at greater yields that traditional manufacturing techniques do. The company is striving to drive down the cost of insulin by 30 percent.

About 38 million Americans have diabetes, with the vast majority being treated for type 2 diabetes, according to the U.S. Centers for Disease Control and Prevention (CDC). Many people with diabetes must take insulin to control their blood sugar levels.

Research company iHealthcareAnalyst predicts the global market for insulin will surpass the $90 billion mark in 2029.

“There has been a lot of talk in the media about reducing the cost of insulin for diabetic patients, but what is often overlooked is that the domestic demand for insulin will soon outpace the supply, leading to a new host of issues,” Cameron Owen, co-founder and CEO of rBIO, says in a news release.

“We’re dedicated to addressing the growing demand for accessible insulin therapies, and … we’re thrilled to announce the viability of our highly scalable manufacturing process.”

Professionals from the University of California San Diego and Johns Hopkins University established rBIO in 2020. The startup moved its headquarters from San Diego to Houston in 2022.

CEO Cameron Owen and Chief Scientific Officer Deenadayalan Bakthavatsalam work on insulin purification in the Houston lab. Photo courtesy

This week's roundup of Houston innovators includes Gaurab Chakrabarti of Solugen, Sandy Guitar of HX Venture Fund, and Cameron Owen of rBIO. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from synthetic biology to venture capital — recently making headlines in Houston innovation.

Gaurab Chakrabarti, the CEO and co-founder of Solugen

Gaurab Chakrabarti shared his entrepreneurial journey on the SXSW stage this year. Photo courtesy of the Greater Houston Partnership

Houston doesn't have too many unicorns — startups valued at $1 billion or more — in its innovation ecosystem, but Solugen, a sustainable chemicals company, is among the elite group. Gaurab Chakrabarti, the CEO and co-founder of the company, joined Houston House by the Greater Houston Partnership, to share his story on the SXSW stage.

“You do make your own luck, but you have to be putting in the work to do it," Chakrabarti says, adding that it's not an easy thing to accomplish. “There are things you can be doing to increase your luck surface area."

He shared several lessons he learned on his founder journey in the discussion. Read more.

Sandy Guitar, managing director of HX Venture Fund

Sandy Guitar shares some lessons learned from the fallout of Silicon Valley Bank. Photo via HXVF

Following the failure of Silicon Valley Bank, there's one thing Sandy Guitar can say has changed for Houston innovators: Bank diversification is going to be a must.

“We didn't think we needed one last week, but this week we know we need a resilience plan," she says, explaining that bank diversification is going to be added to "the operational due diligence playbook." Read more.

Cameron Owen, co-founder and CEO of rBIO

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo courtesy of rBIO

Founded in San Diego, rBIO recently relocated to Houston and has big plans for settling in the city, says Cameron Owen, the company's co-founder and CEO.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

He shares that Houston wasn't originally on his radar, until it was. A visit turned into a relocation, and it's just the beginning for the biotech startup that's focused on using synthetic biology for pharmaceuticals. Read more.

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo via Getty Images

California-founded biotech startup relocates to join Houston's emerging bioeconomy

new to hou

Cameron Owen had an idea for a synthetic biology application, and he pitched it to a handful of postdoctoral programs. When he received the feedback that he didn't have enough research experience, he decided to launch a startup based in San Diego around his idea. He figured that he'd either get the experience he needed to re-apply, or he'd create a viable company.

After three years of research and development, Owen's path seems to have taken him down the latter of those two options, and he moved his viable company, rBIO, to Houston — a twist he didn't see coming.

“Houston was not on my radar until about a year and a half ago,” Owen says, explaining that he thought of Houston as a leading health care hub, but the coasts still had an edge when it came to what he was doing. “San Diego and the Boston area are the two big biotech and life science hubs.”

But when he visited the Bayou City in December of 2021, he says he saw first hand that something new was happening.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

Owen moved to Houston last year, but rBIO still has an academic partner in Washington University in St. Louis and a clinical research organization it's working with too, so he admits rBIO's local footprint is relatively small — but not for long.

"When we look to want to get into manufacturing, we definitely want to build something here in Houston," he says. "We’re just not to that point as a company."

In terms of the stage rBIO is in now, Owen says the company is coming out of R&D and into clinical studies. He says rBIO has plans to fundraise and is meeting with potential partners that will help his company scale and build out a facility.

With the help of its CRO partner, rBIO has two ongoing clinical projects — with a third coming next month. Owen says right now rBIO is targeting the pharmaceutical industry’s biologics sector — these are drugs our bodies make naturally, like insulin. About 12 percent of the population in the United States has diabetes, which translates to almost 40 million people. The demand for insulin is high, and rBIO has a way to create it — and at 30 percent less cost.

This is just the tip of the iceberg — the world of synthetic biology application is endless.

“Now that we can design and manipulate biology in ways we’ve never been able to before,” Owen says, "we’re really only limited by our own imagination.”

Synthetic biology is a field of science that involves programing biology to create and redesign natural elements. While it sounds like science fiction, Owen compares it to any other type of technology.

“Biology really is a type of software,” he says. “Phones and computers at their core run on 1s and 0s. In biology, it’s kind of the same thing, but instead of two letters, it’s four — A, C, T, and G.”

“The cool thing about biology is the software builds the hardware,” he continues. “You put that code in there and the biology builds in and of itself.”

Owen says the industry of synthetic biology has been rising in popularity for years, but the technology has only recently caught up.

“We’re exploring a brave new world — there’s no doubt about that,” Owen says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

METRO rolls out electric shuttles for downtown Houston commuters

on a roll

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.