The Butterfly iQ, a device developed with Baylor College of Medicine's Translational Research Institute for Space Health, is headed to the ISS. Photo courtesy of TRISH

An innovative ultrasonography device that has been developed with the future of space health in mind has hitched a ride on SpaceX's Dragon cargo resupply mission. The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine is supporting the product's first user demo in space.

The Butterfly iQ device was developed by Connecticut-based Butterfly Network Inc. (NYSE: BFLY) and is "the world's first handheld, single-probe whole-body ultrasound system using semiconductor technology," according to a press release.

TRISH has been supporting the device's development since the organization realized the impact it can have on astronauts' ability to administer their own health care.

"NASA is returning to the moon and our astronauts will need to be more self-reliant when it comes to medical care. TRISH is investing in innovations that enable healthcare to be provided in new ways," says Dr. Dorit Donoviel, director of TRISH, in the release. "On deep space missions, tools such as the Butterfly iQ will help the astronauts monitor themselves for concerns such as kidney stones, fluid in the lungs, blood clots and swelling of the optic nerve."

When the device reaches the International Space Station, the astronauts will provide feedback on how they used the device, the quality of the produced ultrasound images, and the efficiency of image acquisition.

"We're thrilled that TRISH has identified the potential of Butterfly iQ to advance care delivery in remote – and extremely remote – care settings. We are confident that the iQ's combination of diagnostic power, portability, reliability and ease of use will prove a useful addition to the medical toolkit of the International Space Station," said Dr. Todd Fruchterman, president and CEO of Butterfly Network, in the release. "It is an honor to know that a Butterfly device will help NASA safeguard the health of its incredible astronauts by providing actionable diagnostic insights."

The device was recently introduced into CHI St. Luke's Health point of cair practice — specifically for COVID-19 treatment. Dr. Jose Diaz-Gomez, an anesthesiologist and ultrasonography expert at the hospital, says the Butterfly iQ's portable ultrasonography technology has been a key diagnostic tool in his team's point of care for COVID-19 patients.

Moving beyond the pandemic, Diaz-Gomez explained the pertinent use of lower cost, portable ultrasound tools like Butterfly iQ to increase access to health care — even here on earth.

"In conditions that are dynamic, you want to have a diagnostic tool that, over time as you're treating a patient, you can see meaningful changes — good or bad," Diaz-Gomez previously told InnovationMap. "The pandemic has enabled us to use — from the initial care to when they are on the ventilator — ultrasonography to see the changes in the patient's' lungs."

TRISH is focused on identifying and supporting technologies like Butterfly iQ through its network of space health experts, BCM, and NASA, which recently granted renewal for its TRISH partnership granted renewal for its TRISH partnership earlier this year. NASA will continue to work with TRISH to conduct biomedical research geared at protecting astronauts in deep space through 2028.

CHI St. Luke's Health has invested in around 40 of the Butterfly iQ devices that can be used to provide accurate and portable ultrasonography on COVID-19 patients. Photo courtesy of CHI St. Luke's

Houston hospital taps new tech to provide more accurate COVID-19 diagnostics and treatment

hand held

With such a dynamic virus like COVID-19 that affects patients with different levels of severity, the first challenge doctors face when treating infected patients is assessing the situation. CHI St. Luke's Health has been implementing a new technology that allows its physicians better access to that initial diagnosis.

Dr. Jose Diaz-Gomez, an anesthesiologist at CHI St. Luke's Health and ultrasonography expert, says the Butterfly iQ's portable ultrasonography technology has been a key tool in his team's point of care for COVID-19 patients. Over the past few years, ultrasonography equipment has been evolving to be more portable and more accurate. That's what the Butterfly iQ technology provides, and Diaz-Gomez says his team was quick to realize how the technology can help in diagnostics and treatment of coronavirus patients.

A traditional approach to examining a patient's lungs would mean radiography, but Diaz-Gomez says his team saw the opportunity ultrasonography and these new, portable devices had on providing more accurate and timely diagnostics.

"In conditions that are dynamic, you want to have a diagnostic tool that, over time as you're treating a patient, you can see meaningful changes — good or bad," Diaz-Gomez says. "The pandemic has enabled us to use — from the initial care to when they are on the ventilator — ultrasonography to see the changes in the patient's' lungs."

Jose Diaz-Gomez is an anesthesiologist at CHI St. Luke's. Photo courtesy of CHI St. Luke's

The Butterfly iQ device is different from its ultrasound predecessors in that it's built to be more accurate, portable, easy to use, and low cost (even being made available for commercial purchase). According to Diaz-Gomez, he could train someone on the device in just a few hours.

Ahead of the pandemic, CHI St. Luke's had 20 of these devices and now has doubled that initial fleet. Along with the other non-Butterfly iQ ultrasonography devices, Diaz-Gomez's team has access to 70 ultrasonography devices — 80 percent of which are dedicated to COVID-19 patients.

"Our institution was very supportive of bringing a very robust roll-out program for point-of-care ultrasonography during the pandemic," Diaz-Gomez says. "We were able to incorporate 40 ultrasound devices — the Butterfly system. Not only that, we actually implemented a very rigorous infection control process to make sure we do it in a safe manner. You don't want to bring tools that will be another source of transmission from patient to patient."

While this new technology is continuing to make a difference in St. Luke's COVID units, Diaz-Gomez is already looking forward to the difference the devices will make post pandemic.

"Whatever we will face after the pandemic, many physicians will be able to predict more objectively when a patient is deteriorating from acute respiratory failure," he says. "Without this innovation, we wouldn't have been able to be at higher standards with ultrasonography."

The device, with its portability, low cost, and ease of use, also has an application for telemedicine and at-home health, and that's something that's exciting for Diaz-Gomez. However, both in his COVID units or in the home setting, the device is only as good as the clinician who's interpreting the images paired with the other diagnostics.

"The integration of ultrasonography with the clinical practice itself — it has to go hand in hand," Diaz-Gomez says. "The clinical decision will depend on that integration."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”