Rice University's Jones School of Business ranked No. 2 in Texas and No. 24 overall. Photo courtesy of Rice University

The 2023 results are in, and U.S. News and World Report has deemed three Houston universities among the best grad schools in the state, with some of its departments landing among the top 70 in the country.

Rice University's Jones School of Business ranked No. 2 in Texas and No. 24 overall in the nation, while the Brown School of Engineering earned the No. 30 spot among engineering schools, and third best program in Texas. Additionally, the university's department of psychology landed the No. 1 spot for its industrial and organizational psychology program.

Houston's University of Texas Health Science Center earned the No. 3 spots in Texas for its masters and doctorate nursing programs, with the programs earning the No. 28 and No. 33 spots overall in the nation.

The University of Houston earned the No. 5 spot in Texas for its graduate education program, and No. 70 nationally. It is the No. 63 best business school and No. 69 best engineering school in the nation, according to the report.

U.S. News publishes its national "Best Graduate Schools" rankings every year, which looks at several programs including business, education, engineering, fine arts, health, and many others. For the 2023-2024 report, the publication decided to withhold its rankings for law and medical schools, which will be published later this year. It also changed the methodology for ranking education and business schools by focusing on outcome rather than a program’s reputation and selectivity.

“When prospective students are considering their options for graduate school, the Best Graduate Schools rankings are designed to help them identify schools that excel in the program they want to study,” said LaMont Jones, senior editor of Education at U.S. News. “With many options available, U.S. News provides a wealth of data in an easy format to help each student make the best decision.”

Some category rankings have not been released for the 2023-24 school year, but the Baylor College of Medicine ranked No. 1 in Texas in the “Best Medical Schools: Research” and “Primary Care” categories for 2022. Additionally, the University of Houston Law Center, South Texas College of Law, and Texas Southern University Marshall School of Law previously ranked No. 3 (tied), No. 6, and No. 8 respectively in Texas for the 2022-2023 academic year.

------

This article originally ran on CultureMap.

From a lab in Rice University to a potential shelf life in stores, the innovation of food coating is just beginning. Photo courtesy of Rice University

Houston researchers find new eco-friendly way to preserve produce

preventing waste

Hunger impacts over 800 million people worldwide, leaving nearly 10 percent of the population suffering from chronic undernourishment. The distressing reality of food shortages co-exists in a world where 1.3 billion tons of food — nearly a third of what's produced — is wasted each year, according to the Food and Agriculture Organization of the United Nations. Rice University's scientific research team's latest discovery takes a crack at ending food shortages and improving sustainability with a common kitchen necessity: eggs.

The discovery of egg-based coating is promising to researchers, as it manages to both prolong produce shelf-life by double while impacting the environment.

"We are reducing the cost, and at the same time we are reducing the waste," says Muhammad M. Rahman, a research scientist at Rice University. "One in every eight people are hungry...on the other side, 33 percent of food is wasted."

It's no secret that overflowing landfills contribute to the climate crisis, piling high with food waste each year. While the United States produces more than seven billion eggs a year, manufacturers reject 3 percent of them. The Rice University researchers estimate that more than 200 million eggs end up in U.S. landfills annually.

According to the Environmental Protection Agency, half of all landfill gas is methane, a hazardous greenhouse gas that contributes to detrimental climate change. Landfills are the third-largest contributor to methane emissions in the country, riding the coattails of agriculture and the energy industry.

COVID-19 has upended supply chains across the nation, and in recent months food waste has become an even more pressing issue. The disruptions of consumer purchasing habits and the indefinite closures of theme parks and select restaurants put a burden on farmers who planned for larger harvests and restaurants unsure of how to adjust. With more Americans cooking at home, panic-buying from grocery stores is also playing a role in accumulating waste.

To understand the challenges of the food industry, it's important to acknowledge the biggest menace to the supply chain: perishability. Fruits and vegetables only last a few days once arriving in grocery stores due to culprits like dehydration, texture deterioration, respiration and microbial growth. Rice University researchers sought to create a coating that addresses each of these issues in a natural, cost-effective way.

Brown School of Engineering materials scientist, Pulickei Ajayan, and his colleagues, were looking for a protein to fight issues like food waste. Rahman, a researcher in Ajayan's lab, received his Ph.D. from Cornell University studying the structure-property relationship in green nanocomposites. He and his fellow researchers found that egg whites were a suitable protein that wouldn't alter the biological and physiological properties of fruit. The study published in Advanced Materials took one year and three months to complete.

According to Rahman, the egg-based coating is non-toxic, biodegradable and healthier than other alternatives on the market. Wax is one common method of fruit preservation that can result in adverse effects on gut cells and the body over time.

"Long-term consumption of wax is not actually good and is very bad for your health," says Dr. Rahman. After wax is consumed, gut cells fragment the preservatives in wax to ions. This process can have a negative impact on "membrane disruption, essential metabolite inhibition, energy drainage to restore homeostasis, and reductions in body-weight gain," according to the research abstract.

Preservation efforts like wax, modified atmospheric packaging and paraffin-based active coatings are not only more expensive and less healthy, but they also alter the taste and look of fruits.

"Reducing food shortages in ways that don't involve genetic modification, inedible coatings or chemical additives is important for sustainable living," Ajayan states in a press release.

The magic of preservation is all in the ingredients. Rice University's edible coating is mostly made from household items. Seventy percent of the egg coating is made from egg whites and yolk. Cellulose nanocrystals, a biopolymer from wood, are mixed with the egg to create a gas barrier and keep the produce from shriveling. To add elasticity to the brittle poly-albumen (egg), glycerol helps make the coating flexible. Finally, curcumin—an extract found in turmeric—works as an antibacterial to reduce the microbial growth and preserve the fruit's freshness.

The experiment was done by dipping strawberries, avocados, papayas and bananas in the multifunctional coating and comparing them with uncoated fruits. Observation during the decaying process showed that the coated fruits had about double the shelf-life of their non-coated counterparts.

For people with egg allergies, the coating can be removed simply by rinsing the produce in water. Rice University researchers are also beginning to test plant-based proteins for vegan consumers.

For its first iteration, Rahman finds that the coating shows "optimistic results" and "potential" for the future of food preservation.

"These are already very green materials. In the next phase, we are trying to optimize this coating and extend the samples from fruits to vegetables and eggs," says Rahman.

Researchers will also work to test a spray protein, making it easier for both commercial providers as well as consumers looking for an at-home coating option. From a lab in Rice University to a potential shelf life in stores, the innovation of food coating is just beginning.

A Houston-based team of scientists and students have developed a low-cost ventilator. Photo courtesy of Rice University

Rice University students and staff team up with Canadian company to make low-cost ventilators

hi, tech

As the COVID-19 case numbers continue to grow, hospitals around the world are either experiencing or expecting a shortage of ventilation units. In Houston, a team of students and staff at Rice University have designed a solution.

Along with Canadian global health design firm, Metric Technologies, the Rice team has developed an automated bag valve mask ventilator that can be crafted for less than $300. Moreover, the team expects to share the designs so that these low-cost machines can be produced everywhere.

The project is being called Take a Breather and was inspired by an early prototype that a group of engineering seniors developed in 2019 at Rice's Brown School of Engineering's Oshman Engineering Design Kitchen, or OEDK. The idea was to take a bag valve mask, which medical professionals use manually by squeezing with their hands, and create a device that can instead compress the bag automatically.

The parts of the device are largely created via 3D printing and laser cut, according to a press release from Rice, and only took around a week to prototype. While the original project was created to help emergency medicine professionals using a manual ventilator, the device is very relevant in the current coronavirus crisis.

"The immediate goal is a device that works well enough to keep noncritical COVID-19 patients stable and frees up larger ventilators for more critical patients," says Amy Kavalewitz, executive director of the OEDK, in the release.

As principal at Metric Technologies, Dr. Rohith Malya, who is assistant professor of emergency medicine at Baylor College of Medicine and an adjunct assistant professor of bioengineering at Rice, saw the growing need for for automated ventilator masks in emergency medicine.

"This is a clinician-informed end-to-end design that repurposes the existing BVM global inventory toward widespread and safe access to mechanical ventilation," Malya says in the release.

According to Malya, more than 100 million bag valve masks are produced annually. The designed device, which can work with these bags, has been named the ApolloBVM — a nod to when President John F. Kennedy announced from the Rice campus that it was his mission to get America to the moon.

"This project appeals to our ingenuity, it's a Rice-based project and it's for all of humanity," he says in the release. "And we're on an urgent timescale. We decided to throw it all on the table and see how far we go."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas A&M pilots $59M program for autonomous helicopters to fight wildfires

Autonomous firefighting

Texas A&M University's George H.W. Bush Combat Development Complex will receive $59.8 million to develop a way for autonomous helicopters to fight to wildfires in the state.

The funds appropriated from the Texas legislature will go toward acquiring up to four UH-60 Blackhawk helicopters and developing their autonomous configuration, as well as to facilities, tools and equipment for research, testing and integration of firefighting capabilities over the next two years, according to a release from Texas A&M.

The BCDC was also selected to work with the Defense Advanced Research Projects Agency (DARPA) on its Aircrew Labor In-cockpit Automation System (ALIAS), which works to reduce risks for pilots and aircraft in high-risk missions.

"Working together with Texas, we have an opportunity to use autonomous helicopters to completely change the conversation around wildfires from containing them to extinguishing them,” Stuart Young, DARPA program manager for ALIAS, said in a release from DARPA.

The BCDC program will incorporate DARPA's automation toolkit, known as MATRIX, which has already demonstrated fully autonomous flight capabilities on approximately 20 aircraft platforms. MATRIX, which was developed by California-based Sikorsky Aircraft, was previously tested in proof-of-concept demonstrations of autonomous fire suppression in California and Connecticut earlier this year, according to DARPA.

“I am proud we are working with DARPA in a manner that will benefit Texas, the Department of Defense, and commercial industry,” retired Maj. Gen. Tim Green, director of the BCDC, said in the release. “Wildland firefighting will be the first mission application fully developed to take advantage of over a decade of work by DARPA on its Aircrew Labor In-cockpit Automation System (ALIAS).”

The BDC will test fully automated and semi-automated ALIAS-equipped aircraft on highly complex firefighting tasks. The complex will also work with Texas A&M University–Corpus Christi’s Autonomy Research Institute, the Texas Division of Emergency Management, the Texas A&M Engineering Extension Service, the Texas A&M Forest Service and the Texas A&M Engineering Experiment Station on the project.

John Diem, director of the innovation proving grounds at BCDC, will serve as principal investigator for the project.

“Advancing system capabilities through the last stages of technology maturation, operational testing, and concept development is always hugely exciting and rewarding,” Diem added in the release. “The best part of my career has been seeing systems I tested move into the hands of warfighters. Now, I’m proud to help ensure ALIAS is safe and effective in protecting life and property – and we will do that through realistic and challenging testing.”

Baylor, Rice win $500,000 to launch humanities-driven health AI center

ethical AI

Baylor College of Medicine and Rice University have been awarded a $500,000 grant from the National Endowment for the Humanities (NEH) to create the Center for Humanities-based Health AI Innovation (CHHAIN).

The new center and three-year initiative aims to create ethically responsible and trustworthy AI for health care that uses history and patient narratives to shape the technology, according to a release. It represents a collaboration between the Center for Medical Ethics and Health Policy at Baylor and the Medical Humanities Research Institute at Rice. Ultimately, the researchers aim to establish a national model for integrating the humanities into the design and implementation of health AI.

Vasiliki Rahimzadeh, assistant professor at Baylor in the Center for Medical Ethics and Health Policy, and Kirsten Ostherr, director of the Medical Humanities Research Institute at Rice, will serve as co-directors of the new center, which will be housed within the Center for Medical Ethics.

The team will also engage in strategic collaborations with Kirstin Matthews, Rice’s Baker Institute for Public Policy and its fellow in science and technology policy, as well as Dr. Quianta Moore, executive director of the Meadows Mental Health Policy Institute. An interdisciplinary team of medical humanities and bioethics scholars from Baylor, Rice, and partners in the Houston area will complete the group.

“CHHAIN represents a bold new model for integrating the humanities into health innovation,” Ostherr said in a news release. “It will create a collaborative space where humanities scholars, patients, developers and clinicians can come together to explore the human dimensions of health AI—trust, narrative and lived experience. These are essential perspectives that are too often missing from technology development, and CHHAIN is designed to change that."

CHHAIN’s work will revolve around three key points:

  • Defining trustworthy AI through patient voices
  • Translating humanities insights into clinical AI settings
  • Public engagement and policy translation

“For AI to truly improve health outcomes, it must be designed with patient trust and wellbeing at its core,” Rahimzadeh said in the news release. “CHHAIN will provide a dedicated space to explore critical bioethics questions, such as how we ensure AI respects patient autonomy, addresses the needs of underserved communities and integrates meaningfully into clinical care. Our goal is to translate these insights into real-world health settings where AI is already shaping patient experiences."

CHHAIN's research mission was also developed thanks to pilot funding from the Margaret M. and Albert B. Alkek Department of Medicine at Baylor and a grant from Rice's Provost's TMC Collaborator Fund.

Texas A&M, the University of North Texas and the University of Texas at El Paso were also home to some of the 97 projects that received a portion of the $34.79 million in fundning from the NEH. See the full list here.

Houston booms as No. 2 U.S. market for retail construction in 2025

Construction Zone

Get ready for a gigantic cartload of new shopping opportunities in Houston. A new report indicates the equivalent of 21 Walmart supercenters is under construction in the region.

The report, published by commercial real estate services provider Lee & Associates, says Houston has nearly 3.9 million square feet of retail space under construction, making it the second most active market for new retail space in the U.S.

To put that in perspective, given the average Walmart supercenter measures 182,000 square feet, the 3.9 million-square-foot total would work out to 21 new supercenters being built in the region.

Dallas-Fort Worth is by far the most active U.S. market for new retail space; DFW leads more than 60 U.S. retail markets with nearly 7.15 million square feet of space under construction. The amount of retail space going up in DFW represents 15 percent of all retail space under construction in the more than 60 U.S. markets tracked by Lee & Associates.

Houston and Austin aren’t too far behind Dallas-Fort Worth, though.

Third-ranked Austin area has more than 3.4 million square feet of retail space being built.

What’s behind the surge in retail construction across Texas? Population growth.

Data recently released by the U.S. Census Bureau shows Houston was the second-fastest-growing metro from 2023 to 2024. DFW was the country’s third-fastest-growing metro from 2023 to 2024, based on the number of new residents, and Austin landed at No. 13.

---

This article originally appeared on CultureMap.com.