The funding will go toward created a summer program called the University of Houston Cardiovascular Undergraduate Research Experience, or UH-CURE. Photo via UH.edu

University of Houston professors have received a nearly $800,000 grant to create a new summer program that will support diverse future researchers.

The National Heart, Lung, and Blood Institute provided $792,900 in grant funding to Bradley McConnell, professor of pharmacology at the UH College of Pharmacy, and Tho Tran, research assistant professor of chemistry at the UH College of Natural Sciences and Mathematics.

The funding will go toward created a summer program called the University of Houston Cardiovascular Undergraduate Research Experience, or UH-CURE. Ten undergraduate students per year will be selected for five years in cardiovascular research across disciplinary lines.

"We are so grateful to be able to provide talented students across the U.S. an opportunity to experience our excellent cardiovascular research environment,” Tran says in a news release. “We want UH-CURE participants to gain confidence in their research abilities through our hands-on approach and the skillset to navigate future challenges through our professional training.”

The goal is to increase students’ interest in cardiovascular research, and students have the opportunity to receive a $6,000 stipend, travel to a globally recognized cardiovascular research conference, and take part in on-campus housing and a food allowance. The summer program will also try to develop research skills, increase awareness of transdisciplinary research, promote diversity and collaborations, cultivate transferable skills necessary for succeeding in graduate school and help facilitate undergraduate students to pursue further training in cardiovascular research.

The program will integrate students into a research lab where they will learn research skills, data analysis, and research integrity. The program will be under the mentorship of a faculty member from across UH’s colleges, and include workshop and enrichment activities.

McConnell and Tran previously formed the American Heart Association-funded UH-HEART pilot program, which focused on cardiovascular research. They expanded on that initiative with UH-CURE, which includes cardiovascular research across disciplinary lines from community engagement and population-based research to basic, translational, and applied research. UH-CURE also helps prepare for careers in cardiovascular research.

“We all know that a diverse environment leads to a much better generation of ideas and solutions,” Tran adds. “We hope to bring that strength to the future of cardiovascular research through our students.”

Tho Tran (left) and Bradley McConnell are professors at UH. Photo via UH.edu

From a new solar energy capturing and storing device to stem cell-based pacemakers, here are three game-changing technologies coming out of UH. Getty Images

3 innovative research projects coming out of the University of Houston

research roundup

Across the University of Houston campus, professors and researchers are creating solutions for various problems in several different industries.

From information technology benefiting police officers to stem cell-based pacemakers, here are three game-changing technologies coming out of UH.

A stem cell-based biological pacemaker

Photo via of UH.edu

A University of Houston associate professor of pharmacology is contributing to research that's taking stem cells found in fat and transforming them into heart cells to act as biologic pacemaker cells.

"We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current," says Bradley McConnell in a UH news release. McConnell's work can be found in the Journal of Molecular and Cellular Cardiology.

The treatment could replace the more than 600,000 electronic pacemakers implanted annually, These devices require regular doctors visits and aren't a permanent solution.

"Batteries will die. Just look at your smartphone," says McConnell. "This biologic pacemaker is better able to adapt to the body and would not have to be maintained by a physician. It is not a foreign object. It would be able to grow with the body and become much more responsive to what the body is doing."

Suchi Raghunathan, doctoral student in the UH Department of Pharmacological and Pharmaceutical Sciences in the College of Pharmacy, is the paper's first author, and Robert J. Schwartz, Hugh Roy and Lillian Cranz Cullen Distinguished Professor of biology and biochemistry, is another one of McConnell's collaborator.

The use of information technology to protect law enforcement

Photo via of UH.edu

A tech-optimized police force is a safe police force, according to new UH research that shows that the use of information technology can cut down on the number of police officers killed or injured in the line of duty by as much as 50 percent.

"The use of IT by police increases the occupational safety of police officers in the field and reduces deaths and assaults against police officers," says C.T. Bauer College of Business Dean Paul A. Pavlou in a news release. Pavlou co-authored a paper on the research that was published in the journal Decision Support Systems.

Pavlou, along with his colleague, Min-Seok Pang of Temple University used FBI, the federal Bureau of Justice Statistics, and U.S. Census data to build a dataset, which tracked IT use and violence against law enforcement from 4,325 U.S. police departments over a six-year period, according to the release.

The study focused on crime intelligence, prediction, and investigation. The potential for IT in the police force had yet to be realized because there hadn't been much research on the subject.

A new solar energy capture and storage technology

Image via of UH.edu

New research coming out of UH has created a new and more efficient way to capture and store solar energy. Rather than using panels that store solar energy through photovoltaic technology, the new method, which is a bit of a hybrid, captures heat from the sun and stores it as thermal energy

The research, which was described in a paper in Joule, reports "a harvesting efficiency of 73% at small-scale operation and as high as 90% at large-scale operation," according to a news release.

The author of the paper, Hadi Ghasemi, is a Bill D. Cook Associate Professor of Mechanical Engineering at UH. He says the potential is greater due to the technology being able to harvest the full spectrum of sunlight. T. Randall Lee, Cullen Distinguished University Chair professor of chemistry, is also a corresponding author.

"During the day, the solar thermal energy can be harvested at temperatures as high as 120 degrees centigrade (about 248 Fahrenheit)," says Lee, who also is a principle investigator for the Texas Center for Superconductivity at UH. "At night, when there is low or no solar irradiation, the stored energy is harvested by the molecular storage material, which can convert it from a lower energy molecule to a higher energy molecule."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.