The funding will go toward created a summer program called the University of Houston Cardiovascular Undergraduate Research Experience, or UH-CURE. Photo via UH.edu

University of Houston professors have received a nearly $800,000 grant to create a new summer program that will support diverse future researchers.

The National Heart, Lung, and Blood Institute provided $792,900 in grant funding to Bradley McConnell, professor of pharmacology at the UH College of Pharmacy, and Tho Tran, research assistant professor of chemistry at the UH College of Natural Sciences and Mathematics.

The funding will go toward created a summer program called the University of Houston Cardiovascular Undergraduate Research Experience, or UH-CURE. Ten undergraduate students per year will be selected for five years in cardiovascular research across disciplinary lines.

"We are so grateful to be able to provide talented students across the U.S. an opportunity to experience our excellent cardiovascular research environment,” Tran says in a news release. “We want UH-CURE participants to gain confidence in their research abilities through our hands-on approach and the skillset to navigate future challenges through our professional training.”

The goal is to increase students’ interest in cardiovascular research, and students have the opportunity to receive a $6,000 stipend, travel to a globally recognized cardiovascular research conference, and take part in on-campus housing and a food allowance. The summer program will also try to develop research skills, increase awareness of transdisciplinary research, promote diversity and collaborations, cultivate transferable skills necessary for succeeding in graduate school and help facilitate undergraduate students to pursue further training in cardiovascular research.

The program will integrate students into a research lab where they will learn research skills, data analysis, and research integrity. The program will be under the mentorship of a faculty member from across UH’s colleges, and include workshop and enrichment activities.

McConnell and Tran previously formed the American Heart Association-funded UH-HEART pilot program, which focused on cardiovascular research. They expanded on that initiative with UH-CURE, which includes cardiovascular research across disciplinary lines from community engagement and population-based research to basic, translational, and applied research. UH-CURE also helps prepare for careers in cardiovascular research.

“We all know that a diverse environment leads to a much better generation of ideas and solutions,” Tran adds. “We hope to bring that strength to the future of cardiovascular research through our students.”

Tho Tran (left) and Bradley McConnell are professors at UH. Photo via UH.edu

From a new solar energy capturing and storing device to stem cell-based pacemakers, here are three game-changing technologies coming out of UH. Getty Images

3 innovative research projects coming out of the University of Houston

research roundup

Across the University of Houston campus, professors and researchers are creating solutions for various problems in several different industries.

From information technology benefiting police officers to stem cell-based pacemakers, here are three game-changing technologies coming out of UH.

A stem cell-based biological pacemaker

Photo via of UH.edu

A University of Houston associate professor of pharmacology is contributing to research that's taking stem cells found in fat and transforming them into heart cells to act as biologic pacemaker cells.

"We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current," says Bradley McConnell in a UH news release. McConnell's work can be found in the Journal of Molecular and Cellular Cardiology.

The treatment could replace the more than 600,000 electronic pacemakers implanted annually, These devices require regular doctors visits and aren't a permanent solution.

"Batteries will die. Just look at your smartphone," says McConnell. "This biologic pacemaker is better able to adapt to the body and would not have to be maintained by a physician. It is not a foreign object. It would be able to grow with the body and become much more responsive to what the body is doing."

Suchi Raghunathan, doctoral student in the UH Department of Pharmacological and Pharmaceutical Sciences in the College of Pharmacy, is the paper's first author, and Robert J. Schwartz, Hugh Roy and Lillian Cranz Cullen Distinguished Professor of biology and biochemistry, is another one of McConnell's collaborator.

The use of information technology to protect law enforcement

Photo via of UH.edu

A tech-optimized police force is a safe police force, according to new UH research that shows that the use of information technology can cut down on the number of police officers killed or injured in the line of duty by as much as 50 percent.

"The use of IT by police increases the occupational safety of police officers in the field and reduces deaths and assaults against police officers," says C.T. Bauer College of Business Dean Paul A. Pavlou in a news release. Pavlou co-authored a paper on the research that was published in the journal Decision Support Systems.

Pavlou, along with his colleague, Min-Seok Pang of Temple University used FBI, the federal Bureau of Justice Statistics, and U.S. Census data to build a dataset, which tracked IT use and violence against law enforcement from 4,325 U.S. police departments over a six-year period, according to the release.

The study focused on crime intelligence, prediction, and investigation. The potential for IT in the police force had yet to be realized because there hadn't been much research on the subject.

A new solar energy capture and storage technology

Image via of UH.edu

New research coming out of UH has created a new and more efficient way to capture and store solar energy. Rather than using panels that store solar energy through photovoltaic technology, the new method, which is a bit of a hybrid, captures heat from the sun and stores it as thermal energy

The research, which was described in a paper in Joule, reports "a harvesting efficiency of 73% at small-scale operation and as high as 90% at large-scale operation," according to a news release.

The author of the paper, Hadi Ghasemi, is a Bill D. Cook Associate Professor of Mechanical Engineering at UH. He says the potential is greater due to the technology being able to harvest the full spectrum of sunlight. T. Randall Lee, Cullen Distinguished University Chair professor of chemistry, is also a corresponding author.

"During the day, the solar thermal energy can be harvested at temperatures as high as 120 degrees centigrade (about 248 Fahrenheit)," says Lee, who also is a principle investigator for the Texas Center for Superconductivity at UH. "At night, when there is low or no solar irradiation, the stored energy is harvested by the molecular storage material, which can convert it from a lower energy molecule to a higher energy molecule."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University scientist earns $600K NSF award to study distractions in the digital age

fresh funding

Rice University psychologist Kirsten Adam has received a $600,000 National Science Foundation CAREER Award to research how visual distractions like phone notifications, flashing alerts, crowded screens and busy workspaces can negatively impact focus—and how the brain works to try to regain it.

The highly competitive five-year NSF grants are given to career faculty members with the potential to serve as academic models and leaders in research and education. Adam’s work will aim to clarify how the brain refocuses in the age of screens, instant gratification and other lingering distractions. The funding will also be used to train graduate students in advanced cognitive neuroscience methods, expand access to electroencephalography (EEG) and for public data sharing.

“Kirsten is a valued member of the School of Social Sciences, and we are thrilled that she has been awarded the prestigious NSF CAREER,” Rachel Kimbro, dean of social sciences, said in a news release. “Because distractions continue to increase all around us, her research is timely and imperative to understanding their widespread impacts on the human brain.”

In Adam’s lab, participants complete simplified visual search tasks while their brain activity is recorded using EEG, allowing researchers to measure attention shifts in real time. This process then captures the moment attention is drawn from a goal and how much effort it takes to refocus.

According to Rice, Adam’s work will test long-standing theories about distraction. The research is meant to have real-world implications for jobs and aspects of everyday life where attention to detail is key, including medical imaging, airport security screening and even driving.

“At any given moment, there’s far more information in the world than our brains can process,” Adam added in the release. “Attention is what determines what reaches our awareness and what doesn’t.”

Additionally, the research could inform the design of new technologies that would support focus and decision-making, according to Rice.

“We’re not trying to make attention limitless,” Adam added. “We’re trying to understand how it actually works, so we can stop designing environments and expectations that fight against it.”

12 Houston climatetech startups join Greentown Labs' growing incubator

Startup Talk

More than 40 climatetech startups joined the Greentown Labs Houston community in the second half of 2025, 12 of which hail from the Bayou City.

The companies are among a group of nearly 70 total that joined the climatetech incubator, which is co-located in Houston and Boston, in Q3 and Q4.

The new companies that have joined the Houston incubator specialize in a variety of clean energy applications, from green hydrogen-producing water-splitting cycles to drones that service wind turbines.

The local startups that joined Greentown Houston include:

  • Houston-based Wise Energie, which delivers turnkey microgrids that blend vertical-axis wind, solar PV, and battery storage into a single, silent system.
  • The Woodlands-based Resollant, which is developing compact, zero-emissions hydrogen and carbon reactors to provide low-cost, scalable clean hydrogen and high-purity carbon for the energy and manufacturing sectors.
  • Houston-based ClarityCastle, which designs and manufactures modular, soundproof work pods that replace traditional drywall construction with reusable, low-waste alternatives made from recycled materials.
  • Houston-based WattSto Energy, which manufactures vanadium redox flow batteries to deliver long-duration storage for both grid-scale projects and off-grid microgrids.
  • Houston-based AMPeers, which delivers advanced, high-temperature superconductors in the U.S. at a fraction of traditional costs.
  • Houston-based Biosimo, which is developing bio-based platform chemicals, pioneering sustainable chemistry for a healthier planet and economy.
  • Houston-based Ententia, which offers purpose-built, generative AI for industry.
  • Houston-based GeoKiln Energy Innovation, which is developing a new way to produce clean hydrogen by accelerating natural geologic reactions in iron-rich rock formations using precision electrical heating.
  • Houston-based Timbergrove, which builds AI and IoT solutions that connect and optimize assets—boosting visibility, safety, and efficiency.
  • Houston-based dataVediK, which combines energy-domain expertise with advanced machine learning and intelligent automation to empower organizations to achieve operational excellence and accelerate their sustainability goals.
  • Houston-based Resonant Thermal Systems, which uses a resonant energy-transfer (RET) system to extract critical minerals from industrial and natural brines without using membranes or grid electricity.
  • Houston-based Torres Orbital Mining (TOM),which develops autonomous excavation systems for extreme environments on Earth and the moon, enabling safe, data-driven resource recovery and laying the groundwork for sustainable off-world industry.

Other startups from around the world joined the Houston incubator in the same time period, including:

More than 100 startups joined Greentown this year, according to an end-of-year reflection shared by Greentown CEO Georgina Campbell Flatter.

Flatter joined Greentown in the top leadership role in February 2025. She succeeded former CEO and president Kevin Knobloch, who stepped down in July 2024.

"I moved back to the United States in March 2025 after six years overseas—2,000 miles, three children, and one very patient husband later. Over these months, I’ve had the chance to hear from the entrepreneurs, industry leaders, investors, and partners who make this community thrive. What I’ve experienced has left me brimming with urgent optimism for the future we’re building together," she said in the release.

According to Flatter, Greentown alumni raised more than $2 billion this year and created more than 3,000 jobs.

"Greentown startups and ecosystem leaders—from Boston, Houston, and beyond—are showing that we can move further and faster together. That we don’t have to choose between more energy or lower emissions, or between increasing sustainability and boosting profit. I call this the power of 'and,'" Flatter added. "We’re working for energy and climate, innovation and scale, legacy industry and startups, prosperity for people and planet. The 'and' is where possibility expands."

---

This article originally appeared on EnergyCaptialHTX.com.

Intuitive Machines forms partnership with Italian companies for lunar exploration services

to the moon

Houston-based space technology, infrastructure and services company Intuitive Machines has forged a partnership with two Italian companies to offer infrastructure, communication and navigation services for exploration of the moon.

Intuitive Machines’ agreement with the two companies, Leonardo and Telespazio, paves the way for collaboration on satellite services for NASA, a customer of Intuitive Machines, and the European Space Agency, a customer of Leonardo and Telespazio. Leonardo, an aerospace, defense and security company, is the majority owner of Telespazio, a provider of satellite technology and services.

“Resilient, secure, and scalable space infrastructure and space data networks are vital to customers who want to push farther on the lunar surface and beyond to Mars,” Steve Altemus, co-founder and CEO of Intuitive Machine, said in a news release.

Massimo Claudio Comparini, managing director of Leonardo’s space division, added that the partnership with Intuitive Machines is a big step toward enabling human and robotic missions from the U.S., Europe and other places “to access a robust communications network and high-precision navigation services while operating in the lunar environment.”

Intuitive Machines recently expanded its Houston Spaceport facilities to ramp up in-house production of satellites. The company’s first satellite will launch with its upcoming IM‑3 lunar mission.

Intuitive Machines says it ultimately wants to establish a “center of space excellence” at Houston Spaceport to support missions to the moon, Mars and the region between Earth and the moon.