BP has partnered with an environmental nonprofit to reduce emissions of methane. Getty Images

When it comes to greenhouse gas emissions in oil and gas, methane is a less talked about, sneakier culprit compared to carbon dioxide. While it remains in the atmosphere for a shorter period than CO2, methane is 84 times more potent than CO2 during its first 20 years after being emitted into the air.

BP, which has its North American headquarters in Houston, has set out a strategy to minimize its contributions of methane to the atmosphere. The company made a three-year deal with New York-based Environmental Defense Fund to reduce methane emissions in its global supply chain by incorporating new technologies and practices, which will be identified by the new partnership.

"BP is taking a leading role in addressing methane emissions, and this collaboration with EDF is another important step forward for us and for our industry," says Bernard Looney, BP's upstream chief executive, in a release. "We've made great progress driving down emissions across our own business, including meeting our industry-leading methane intensity target of 0.2 percent, but there is much more work to do and partnering with the committed and capable team at EDF will help us develop and share best practices."

BP and EDF will work with universities and third-party experts in order to identify cutting-edge technology for the new initiative, and the company hopes to serve as a leader in reducing greenhouse gas emissions, which is no small undertaking, says Fred Krupp, EDF president, in the release.

"The scale of the methane challenge is enormous, but so is the opportunity," Krupp says. "Whether natural gas can play a constructive role in the energy transition depends on aggressive measures to reduce emissions that include methane. BP took such a step today."

EDF, a nonprofit, won't be paid by BP — per EDF's policy —but BP will assist with funding when it comes to employing experts tasked with finding better technologies to minimize emissions.

"EDF and BP don't agree on everything, but we're finding common ground on methane," Krupp says in the release. "BP has shown early ambition to lead on methane technology. We hope to see more as BP delivers on its own stringent methane goal and we work together to spread solutions industrywide."

BP and EDF have identified three key areas the initiative will focus on this year.

New detection technology
BP will grant up to $500,000 to a detection and quantification technology project at Colorado State University. The initiative includes drone technology and stationary monitoring that hopes to speed up methane emission detection time.

"CSU welcomes this support from BP and EDF for this critical research work, and this provides the necessary confidence and momentum for other stakeholders to contribute in a collaborative environment, in which the results and tools will benefit the wider industry," says Dan Zimmerle, senior research associate for Colorado State University's Energy Institute, in the release.

Advances in digital technology
This year, BP and EDF will announce a digitization project for reducing methane emissions. An EDF report, Fueling the Digital Methane Future, which produced with Accenture Strategy, identified solutions such as machine learning, artificial intelligence, and augmented reality as potential pathways to fewer emissions.

Joint ventures
A 2018 EDF report proved that oil and gas companies can team up to reduce emissions together. BP and EDF plan to host a workshop to find best practices for emission reductions on a larger scale.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University awards $150,000 to space researchers

future of space

The Rice Space Institute has awarded $150,000 in seed funding to six university researchers to further their work in space-related science and engineering.

The projects each will receive $25,000 until June 2025, according to Rice. They focus on an array of topics from the challenges of harmful space radiation to the reliability of space robots.

“These projects collectively represent RSI’s commitment to pioneering studies that advance Rice’s space research portfolio,” RSI Director David Alexander, said in a statement.

The projects include:

  • Co-advancement of formal methods and prognostic digital twins for reliability and resilience of space robotics: The project aims to make space robots more reliable by improving the lifespan of robotic components operating in space.
  • Development of 3D-printed waveguide arrays for snapshot spectrometers for Earth remote sensing observations: The project will develop 3D waveguide components and a hyperspectral imaging system that will help provide data on Earth's water cycle. It's led by Tomasz Tkaczyk.
  • Haptic sensory feedback augmentation to mitigate vestibular deficits following microgravity exposure: The project focuses on a device that uses vibrotactile feedback to improve astronauts' balance and movement impairments due to microgravity. It's led by Marcia O’Malley, Vanessa Sanchez, Shane King and Kyra Stovicek.
  • Modeling framework for bioelectricity and its effect on the mechano-biology of wounds to accelerate healing in microgravity environments: The project focuses on the effect of bioelectricity on wound healing in microgravity. It's led by Raudel Avila, Swathi Balaji and K. Jane Grande-Allen.
  • The role of the environment in planet formation: The project will develop a conference at at the Rice Global Paris Center for foster collaboration between Rice, RSI and international institutions for students, researchers and faculty. It's led by Megan Reiter.
  • Spark plasma sintered high-density and lightweight boron nitrides ceramics for radiation shielding applications: The project aims to create boron-nitride ceramics to shield against harmful space radiation. It's led by Robert Vajtai and Abhijit Biswas.

Earlier this year, Alexander was named to the first-ever Texas Aerospace Research and Space Economy Consortium Executive Committee, part of the new Texas Space Commission. TARSEC is composed of representatives of each higher education institution in the state and aims to ensure that Texas remains a "powerhouse" in the space industry, Lieutenant Governor Dan Patrick said in a release.

Meanwhile, The Translational Research Institute for Space Health, or TRISH, which is part of BCM’s Center for Space Medicine, announced plans to launch six more experiments into space this year, focused on topics ranging from motion sickness to genome alterations during space travel.

Houston energy startup selects Texas location for first storage facility

headed west

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.

------

This article originally ran on EnergyCapital.