CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Prabhdeep Singh Sekhon, CEO of Gold H2, joins the Houston Innovators Podcast. Photo courtesy of Gold H2

Newly named CEO to lead Houston gold hydrogen biotech co. into high-growth phase

HOUSTON INNOVATORS PODCAST EPISODE 239

Using microbes to sustainably unlock low-cost hydrogen sounds like the work of science fiction, but one Houston company is doing just that.

Gold H2, a spin-off company from Cemvita, has bioengineered subsurface microbes to use in wells to consume carbon and generate clean hydrogen. The technology was piloted two years ago by Cemvita, and now, as its own company with a new CEO, it's safe to say Gold H2's on its way.

"First of all, that was groundbreaking," Prabhdeep Singh Sekhon, CEO of Gold H2, says of the 2022 pilot in the Permian Basin, "to be able to use bugs to produce hydrogen within a couple of days."

"2024 is supposed to be the year where Gold H2 takes off," Sekhon, who joined the company in April, tells the Houston Innovators Podcast. "It was one of those opportunities that I couldn't turn down. I had been following the company. I thought, 'here is this innovative tech that's on the verge of providing a ground-breaking solution to the energy transition — what better time to join the team.'"

Sekhon shares on the show how his previous roles at NextEra Energy Resources and Hess have prepared him for Gold H2. Specifically, as a leader on NextEra’s strategy and business development team, he says he was tasked with figuring out what the energy industry looks like in the next five, 10, and 20 years.

"Green hydrogen was a huge buzz, but one of the things I realized when I started looking at green hydrogen was that it's very expensive," Sekhon says. "I wanted to look at alternatives."

This journey led him to what Cemvita was doing with gold hydrogen, Sekhon says, explaining that the ability to use biotechnology to provide a new revenue stream from the mostly used up wells struck him as something with major potential.

"The idea of repurposing existing oil and gas assets to become hydrogen assets, leveraging current infrastructure to drive down overall deliver costs — to me I thought, 'wow, if they can make this works, that's brilliant,'" he says.

Now, as CEO, Sekhon gets to lead the company toward these goals, which include expanding internationally. He explains on the show that Gold H2 is interested in expanding to any part of the world where there's interest in implementing their biotech. In order to support the growth, Sekhon says they are looking to raise funding this year with plans for an additional round, if needed, in 2025.

"When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Sekhon says, explaining that Gold H2's approach to gold hydrogen development is novel when you look at emerging technology in the space. "We're using a biological process — cheap bugs that eat oil for a living."

With its blend of biotechnology, conservation, and education, RioRaiz seeks to inspire a new generation of conservationists. Photo via RioRaiz/Instagram

Innovative Houston nonprofit taps into biotech to preserve ecological biodiversity

conservation tech

For centuries, humans have been negatively impacting the natural world around them. A Houston organization is looking to leave an impact on the environment — but this time for the better.

Based in Houston, RioRaiz is a 501c3 nonprofit organization charting a unique course in the world of conservation and education. Founded in March of 2021, RioRaiz – meaning "root of the river" in Spanish, a nod to its deep-rooted connection with South American culture – seeks to preserve biodiversity through biotechnology and offer transformative learning experiences to contribute to a healthier planet.

Led by Jeff Carlson, the president and CEO, RioRaiz's mission is driven by three core pillars: conservation, scientific discovery, and education.

Currently, the nonprofit's efforts are focused on regions on the edge of ecological disruption, specifically the East Texas area and the Tropical Andes. In Texas, the organization aims to expand the biome of the Big Thicket National Preserve in Kountze as well as engaging locals by hosting clean-up drives. In the Andes, RioRaiz aspires to establish biological corridors between national parks and natural reserves, diminishing potential disruptions to animal migration patterns.

The timeline for these critical initiatives, Carlson said, hinges on donations.

"We have a list of priorities that is cataloged from input from our scientific collaborators, as well as our ability to deliver on our promises to our donors and supporters,” Carlson said.

Partnerships form a critical role in RioRaiz's work, notably those with academic institutions in the United States and Colombia. One of these collaborations saw Carlson spend three months in Colombia, working with the local Páez tribe, also known as the Nasa, to explore the potential of their traditional medicines for modern treatments.

"We're really excited to learn and to share our techniques and our knowledge," Carlson said, underlining the organization's commitment to partnering with traditional and indigenous knowledge sources.

With its blend of biotechnology, conservation, and education, RioRaiz seeks to inspire a new generation of conservationists. By offering an intimate virtual glimpse into the world's biomes, the nonprofit aims to instill a deep-rooted respect for nature and encourage sustainable action.

"If you expose students to these different kinds of environments at an early age, that might inspire somebody to go into conservation," Carlson said.

With a progressive effort, RioRaiz is harnessing the power of virtual reality to redefine education. The organization uses specialized filming equipment during its expeditions, capturing moments like the discovery of new species or conducting bio surveys. RioRaiz's visually compelling stories will surpass language barriers, transporting students virtually to different biomes. In time, Carlson hopes to distribute pre-loaded systems to communities with limited internet access, taking the classroom to every corner of the world. These virtual reality experiences are expected to launch within the next year.

"We want to bring the rainforest into the classroom," Carlson said.

Through its work, RioRaiz aims to demonstrate that the route to a sustainable future lies not just in face-to-face interactions, but in a global, interconnected approach to education and conservation. Its vision is clear — to grow far beyond traditional reaches, preserving biodiversity and fostering a healthier world.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space tech startups share latest updates on lunar missions and more

space update

Houston-based space tech companies Axiom Space and Intuitive Machines recently shared updates on innovative projects and missions, each set to launch by 2027.

Axiom Space

Axiom Space, developer of the world’s first commercial space station and other space infrastructure, is gearing up to launch two orbital data center nodes to low-earth orbit by the end of 2025.

The Axiom Space nodes will lay the foundation for space-based cloud computing. Axiom says orbital data centers provide cloud-enabled data storage and processing, artificial intelligence, and machine learning directly to satellites, constellations, and other spacecraft in Earth’s orbit. This innovation will reduce reliance on earth-based systems, enhance wireless mesh networks and improve real-time operation of space-borne assets, according to Axiom.

Axiom has been working on the development of orbital data centers since 2022. The two nodes going into space in 2025 will be part of Kepler Communications’ 10-satellite data relay network, which is scheduled to launch by the end of this year. Axiom Space and Kepler Communications have been collaborating since 2023.

Kam Ghaffarian, co-founder, executive chairman, and CEO of Axiom, says his company already has deals in place with buyers of space-based cloud computing services. Orbital data centers “are integral to Axiom Space’s vision of era-defining space infrastructure, unlocking transformational capabilities and economic growth,” he says.

Axiom Space says it will be able to buy additional payloads on Kepler’s network to boost capacity for orbital data centers. The two companies will team up to provide network and orbital data center services to various customers.

Intuitive Machines

Meanwhile, Intuitive Machines, a space exploration, infrastructure and services company, has picked SpaceX’s Falcon 9 rocket to launch its fourth delivery mission to the moon. The launch will include two lunar data relay satellites for NASA.

Intuitive Machines says its fourth lunar delivery mission is scheduled for 2027. The mission will comprise six NASA commercial lunar payloads, including a European Space Agency drill set designed to search for water at the moon’s south pole.

“Lunar surface delivery and data relay satellites are central to our strategy to commercialize the moon,” Intuitive Machines CEO Steve Altemus says.

The first of five lunar data relay satellites will be included in the company’s third delivery mission to the moon. The fourth mission, featuring two more satellites, will be followed by two other satellite-delivery missions.

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.