Omid Veiseh from Rice University and Edward Ratner from the University of Houston have been named 2024 National Academy of Inventors fellows for their innovative contributions. Courtesy photos

The highest professional distinction awarded to academic inventors, the National Academy of Inventors, have elected two fellows from Rice University and the University of Houston for its 2024 class.

Edward Ratner, computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, bioengineer at Rice University and director of the Biotech Launch Pad, were two of the 170 honorees representing 39 states and 12 countries.

The 2024 class will be honored and presented their medals on June 26 in Atlanta, Georgia by a senior official of the U.S. Patent and Trademark Office.

Ratner’s research includes artificial intelligence, machine learning, image analysis, video compression and video streaming, and has led to 40 patents currently. His inventions on adaptive video streaming assists the technology used today for streaming video over the internet. Ratner becomes the 40th UH faculty who is either a fellow or senior member of the NAI.

“Ed Ratner’s recognition as a Fellow of the NAI is a testament to his exceptional creativity, dedication and impact in advancing innovation,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Here at the University of Houston, we take great pride in fostering a culture where visionary thinkers like Ed can thrive. This honor reflects not only his remarkable achievements but also the University’s commitment to shaping the future through groundbreaking research and invention.”

Veiseh is a current professor of bioengineering, a Cancer Prevention and Research Institute of Texas Scholar and faculty director of the Rice Biotech Launch Pad, which is a Houston-based accelerator that focuses on “expediting the translation of the university’s health and medical technology discoveries into cures,” according to a news release from Rice.

His research focuses on developing innovative treatments that involve combining synthetic biology, molecular engineering and advanced materials science. He also helped lead a $45 million project funded by the Advanced Research Projects Agency for Health (ARPA-H) to create implantable cancer monitoring and treatment devices.

“It is our mission to make sure that scientific and technological advancements are translated from laboratory discoveries into life-saving cures and products that have a real and enduring impact on patients’ lives,” said Veiseh in a news release. “I am honored to be recognized by this distinguished award and would like to thank my collaborators at Rice and elsewhere for working toward this shared goal of improving lives through better, more effective treatments.”

In

2023, UH’s Vincent Donnelly, Moores professor of Chemical and Biomolecular Engineering, and Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen Distinguished university chair of Petroleum Engineering, all received the Fellows honor. Other 2024 Texas-based fellows include Malcom Brenner from Baylor College of Medicine, Maria Croyle from The University of Texas at Austin, Jaime Grunlan from Texas A&M University, and more.
Rice’s Biotech Launch Pad will lead the effort to commercialize the device. Photo courtesy Rice University

Rice researchers secure $35M federal grant to advance medical device technology

big money

Rice University has secured part of a nearly $35 million federal grant aimed at commercializing a bioelectric implant for treatment of type 2 diabetes and obesity.

The federal Advanced Research Projects Agency for Health awarded the $34.9 million grant to Rice and several other universities.

Rice’s Biotech Launch Pad will lead the effort to commercialize the self-contained, implantable Rx On-site Generation Using Electronics (ROGUE) device. ROGUE houses cells that are engineered to produce type 2 diabetes and obesity therapies in response to patients’ needs.

Carnegie Mellon University leads the team of researchers handling development and testing of ROGUE, which acts as a “living pharmacy” designed to make biologic drugs available on demand in a patient’s body.

The ROGUE initiative aims to keep the cost of this treatment significantly below the cost of other biologics-based treatments.

“ROGUE’s innovative design combines efficient biological manufacturing, long-term durability, and patient-friendly features that have the potential to transform the landscape of biologics delivery,” Omid Veiseh, professor of bioengineering and faculty director of the Rice Biotech Launch Pad, says in a news release.

Paul Wotton, an in-house entrepreneur at the university and executive director of the Rice accelerator, is helping guide ROGUE toward becoming an independent company.

“With the Biotech Launch Pad, our goal is venture creation in parallel to the groundbreaking research at Rice and its collaborating institutions,” Wotton says.

Omid Veiseh is professor of bioengineering and faculty director of the Rice Biotech Launch Pad. Photo courtesy Rice University

The first of Rice University's new moonshot initiatives, the Rice Biotech Launch Pad was announced on the 61st anniversary of President John F. Kennedy's address at Rice Stadium. Photo by Gustavo Raskosky/Rice University

New biotech lab, accelerator emerges in Houston to speed up commercialization of life-saving cures

ready to launch

A new initiative from Rice University is launching with an ambitious goal — to take biotech innovations from concept to clinical trials in five years or less.

The Rice Biotech Launch Pad is a newly announced initiative that will expedite Rice University's health and medical technology innovations. The accelerator, which will occupy 15,000 square feet of space on campus, will be funded through federal grants and donations.

“The Rice Biotech Launch Pad will ensure that our faculty and students have the skills, partnerships, tools and support to create technologies that can transform our city and the world,” Rice President Reginald DesRoches says in a press release. “More importantly, the accelerator will provide a pathway for these creations and discoveries to be turned into medical cures that significantly impact people’s lives. Rice researchers have been doing this for years. This development will allow them to do even more and at a quicker, more efficient pace.”

Leading the program are two seasoned experts: associate professor of bioengineering at Rice, Omid Veiseh, and biotech entrepreneur Paul Wotton, who co-founded Avenge Bio and other startups with technology discovered in Veiseh’s lab. Veiseh will serve as faculty director, and Wotton will lead as executive director. Veiseh says the team behind the new lab will assist faculty in their mission to garner funding — via grants from organizations such as ARPA-H, DARPA and the NIH — as well as creating pathways for licensing revenue for the university.

“We have the infrastructure, financial backing and talent in Houston to do more in creating new medicines to cure disease," Veiseh says in the release. "This is a thriving environment that warrants more attention and dedication to bring forward Houston’s medical discoveries. I am proud to help make this happen.”

The accelerator’s founding advisory council members from Rice are:

  • Paul Cherukuri, Rice’s vice president for innovation.
  • Jacob Robinson, professor of electrical and computer engineering and of bioengineering and founder and CEO of Motif Neurotech.
  • Ashok Veeraraghavan, professor of electrical and computer engineering and computer science and co-founder of Synopic.
  • Yael Hochberg, head of the Rice Entrepreneurship Initiative and the Ralph S. O'Connor Professor of Finance and Entrepreneurship at the Jesse H. Jones Graduate School of Business.

“The Biotech Launch Pad is the first in a series of Rice Moonshots that are hyper-focused on building a ‘speed and scale’ innovation ecosystem across Houston," Cherukuri says. "We at Rice are committed towards driving the Biotech Launch Pad in collaboration with our partners within the Texas Medical Center and the new Helix Park campus.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops innovative soft skeleton for kids with cerebral palsy

health tech

A team from the NSF University of Houston Building Reliable Advances and Innovation in Neurotechnology (UH BRAIN) Center and TIRR Memorial Hermann has introduced the MyoStep soft exoskeleton for children with cerebral palsy, according to a news release from UH.

The soft skeleton aims to address motor impairments caused by cerebral palsy that impact children’s ability to participate in physical activities, self-care and academics.

“The MyoStep project represents a significant advancement in the field of pediatric mobility aids, particularly for children with cerebral palsy,” Jose Luis Contreras-Vidal, director of UH BRAIN and the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering, said in a news release.

The next-generation lightweight, soft exoskeleton was funded by the IEEE Electron Devices Society (EDS) Award.

The MyoStep is made to be lightweight and discreetly fit under clothes. It includes a wireless sensor network embedded inside the smart and flexible fabrics that is the backbone of the suit and collects and sends real-time data about the user’s movements It also includes safety features with temperature monitoring and emergency shut-off mechanisms.

“By integrating cutting-edge technologies such as artificial muscles, smart fabrics, and a comprehensive sensor network, MyoStep offers a promising solution to the challenges faced by existing exoskeletons,” Contreras-Vidal said in a news release.

Cerebral palsy is a neurological disorder that impacts motor skills. It occurs in one to four out of every 1,000 births worldwide.

“What makes the MyoStep project so compelling is that it’s not just about the technology: it’s about restoring confidence, function, and hope,” Dr. Gerard Francisco, a clinical partner on the technology, The Wulfe Family Chair of Physical Medicine and Rehabilitation at UTHealth Houston and medical officer at TIRR Memorial Hermann, said in a news release. “This kind of innovation has the potential to dramatically improve quality of life, helping children move through the world with greater ease and dignity.”

Houston universities launch summer 2025 accelerators for student ventures

summer session

OwlSpark, a startup and small business accelerator for Rice University-affiliated ventures, has named the latest 11 companies to its program that focus on challenges across technology, health care, consumer products and other sectors. The program is hosted in tandem with the University of Houston’s RED Labs and will take place at the Ion.

The early-stage accelerator runs for 12 weeks and culminates at The Bayou Startup Showcase on July 31.

According to a news release from Rice, “the accelerator cultivates a vibrant environment where founders are empowered to build, test, and scale their ideas in a setting built for entrepreneurship.”

The program is divided into two tracks: one for high-growth tech startups and another for small businesses.

The latest OwlSpark class includes:

  • Web and mobile platform EasilyBEE, which boosts family and community engagement in K-12 schools
  • Diagnos, a wearable-integrated wellness platform that monitors health and prevents injuries in college athletes
  • Johnnie, an AI-powered records management software for rural and midsize first responder agencies
  • JustKindHumility, which offers faith-based travel journals
  • Klix, whichautomates early-stage clinical trial management from document screening to AI-driven patient outreach and eligibility checks
  • Lizzy’s Gourmet Gains, which offers high-protein, flavor-forward dips and dressings
  • NextStep, an AI-powered multilingual assistant helping underserved communities navigate resources for health care
  • A catheter-integrated sensor device PeriShield, which detects early infection in peritoneal dialysis patients
  • Right Design, which connects creatives with vetted employers, mentors and projects via job matching and commissions
  • UCoreAlly, which provides business support for biotech startups in marketing, business development, customer support, human resources and accounting
  • Ultrasound-based ablation system VentriTech that treats ventricular arrhythmias

The Owl Spark accelerator has supported 229 founders and launched 104 ventures with participants raising more than $116 million in funding since 2013, according to Rice.

UH also shared the 9 teams that will participate in RED Labs' latest cohort.

The latest RED Labs class includes:

  • BLEED, an art agency that helps artists commercialize their work by connecting art collectors to original artwork and artists
  • Brain Haven, which is developing nasal inhalers designed to stimulate the emotional and memory processing centers to preserve neuroplasticity and delay cognitive decline
  • Candi Wands Automated Cotton Candy, which has developed a continuously operating cotton candy machine to help entertainment venues boost passive revenue
  • ChériCollectible, a series of in-person events where Gen Z and collectors can buy, sell, and trade modern collectibles
  • JobRadar, a job board that uses AI to analyze and categorize positions in real-time and then apply candidates instantly
  • Stage Select LLC, a supplementary talent booking service that partners with multi-stage venues to help fill gaps in programming and increase profitability by finding and booking local talent for their "second stage."
  • P-LEGS, a pediatric lower-limb exoskeleton that reduces physical strain on therapists while delivering customizable gait training.
  • Roll ‘N’ Reel Photo Booth, an interactive event-based equipment rental business
  • Stayzy, which automates guest communication and handles maintenance issues with an AI-powered software for short-term rental companies that manage 20-plus rentals