Omid Veiseh from Rice University and Edward Ratner from the University of Houston have been named 2024 National Academy of Inventors fellows for their innovative contributions. Courtesy photos

The highest professional distinction awarded to academic inventors, the National Academy of Inventors, have elected two fellows from Rice University and the University of Houston for its 2024 class.

Edward Ratner, computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, bioengineer at Rice University and director of the Biotech Launch Pad, were two of the 170 honorees representing 39 states and 12 countries.

The 2024 class will be honored and presented their medals on June 26 in Atlanta, Georgia by a senior official of the U.S. Patent and Trademark Office.

Ratner’s research includes artificial intelligence, machine learning, image analysis, video compression and video streaming, and has led to 40 patents currently. His inventions on adaptive video streaming assists the technology used today for streaming video over the internet. Ratner becomes the 40th UH faculty who is either a fellow or senior member of the NAI.

“Ed Ratner’s recognition as a Fellow of the NAI is a testament to his exceptional creativity, dedication and impact in advancing innovation,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Here at the University of Houston, we take great pride in fostering a culture where visionary thinkers like Ed can thrive. This honor reflects not only his remarkable achievements but also the University’s commitment to shaping the future through groundbreaking research and invention.”

Veiseh is a current professor of bioengineering, a Cancer Prevention and Research Institute of Texas Scholar and faculty director of the Rice Biotech Launch Pad, which is a Houston-based accelerator that focuses on “expediting the translation of the university’s health and medical technology discoveries into cures,” according to a news release from Rice.

His research focuses on developing innovative treatments that involve combining synthetic biology, molecular engineering and advanced materials science. He also helped lead a $45 million project funded by the Advanced Research Projects Agency for Health (ARPA-H) to create implantable cancer monitoring and treatment devices.

“It is our mission to make sure that scientific and technological advancements are translated from laboratory discoveries into life-saving cures and products that have a real and enduring impact on patients’ lives,” said Veiseh in a news release. “I am honored to be recognized by this distinguished award and would like to thank my collaborators at Rice and elsewhere for working toward this shared goal of improving lives through better, more effective treatments.”

In

2023, UH’s Vincent Donnelly, Moores professor of Chemical and Biomolecular Engineering, and Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen Distinguished university chair of Petroleum Engineering, all received the Fellows honor. Other 2024 Texas-based fellows include Malcom Brenner from Baylor College of Medicine, Maria Croyle from The University of Texas at Austin, Jaime Grunlan from Texas A&M University, and more.
Rice’s Biotech Launch Pad will lead the effort to commercialize the device. Photo courtesy Rice University

Rice researchers secure $35M federal grant to advance medical device technology

big money

Rice University has secured part of a nearly $35 million federal grant aimed at commercializing a bioelectric implant for treatment of type 2 diabetes and obesity.

The federal Advanced Research Projects Agency for Health awarded the $34.9 million grant to Rice and several other universities.

Rice’s Biotech Launch Pad will lead the effort to commercialize the self-contained, implantable Rx On-site Generation Using Electronics (ROGUE) device. ROGUE houses cells that are engineered to produce type 2 diabetes and obesity therapies in response to patients’ needs.

Carnegie Mellon University leads the team of researchers handling development and testing of ROGUE, which acts as a “living pharmacy” designed to make biologic drugs available on demand in a patient’s body.

The ROGUE initiative aims to keep the cost of this treatment significantly below the cost of other biologics-based treatments.

“ROGUE’s innovative design combines efficient biological manufacturing, long-term durability, and patient-friendly features that have the potential to transform the landscape of biologics delivery,” Omid Veiseh, professor of bioengineering and faculty director of the Rice Biotech Launch Pad, says in a news release.

Paul Wotton, an in-house entrepreneur at the university and executive director of the Rice accelerator, is helping guide ROGUE toward becoming an independent company.

“With the Biotech Launch Pad, our goal is venture creation in parallel to the groundbreaking research at Rice and its collaborating institutions,” Wotton says.

Omid Veiseh is professor of bioengineering and faculty director of the Rice Biotech Launch Pad. Photo courtesy Rice University

The first of Rice University's new moonshot initiatives, the Rice Biotech Launch Pad was announced on the 61st anniversary of President John F. Kennedy's address at Rice Stadium. Photo by Gustavo Raskosky/Rice University

New biotech lab, accelerator emerges in Houston to speed up commercialization of life-saving cures

ready to launch

A new initiative from Rice University is launching with an ambitious goal — to take biotech innovations from concept to clinical trials in five years or less.

The Rice Biotech Launch Pad is a newly announced initiative that will expedite Rice University's health and medical technology innovations. The accelerator, which will occupy 15,000 square feet of space on campus, will be funded through federal grants and donations.

“The Rice Biotech Launch Pad will ensure that our faculty and students have the skills, partnerships, tools and support to create technologies that can transform our city and the world,” Rice President Reginald DesRoches says in a press release. “More importantly, the accelerator will provide a pathway for these creations and discoveries to be turned into medical cures that significantly impact people’s lives. Rice researchers have been doing this for years. This development will allow them to do even more and at a quicker, more efficient pace.”

Leading the program are two seasoned experts: associate professor of bioengineering at Rice, Omid Veiseh, and biotech entrepreneur Paul Wotton, who co-founded Avenge Bio and other startups with technology discovered in Veiseh’s lab. Veiseh will serve as faculty director, and Wotton will lead as executive director. Veiseh says the team behind the new lab will assist faculty in their mission to garner funding — via grants from organizations such as ARPA-H, DARPA and the NIH — as well as creating pathways for licensing revenue for the university.

“We have the infrastructure, financial backing and talent in Houston to do more in creating new medicines to cure disease," Veiseh says in the release. "This is a thriving environment that warrants more attention and dedication to bring forward Houston’s medical discoveries. I am proud to help make this happen.”

The accelerator’s founding advisory council members from Rice are:

  • Paul Cherukuri, Rice’s vice president for innovation.
  • Jacob Robinson, professor of electrical and computer engineering and of bioengineering and founder and CEO of Motif Neurotech.
  • Ashok Veeraraghavan, professor of electrical and computer engineering and computer science and co-founder of Synopic.
  • Yael Hochberg, head of the Rice Entrepreneurship Initiative and the Ralph S. O'Connor Professor of Finance and Entrepreneurship at the Jesse H. Jones Graduate School of Business.

“The Biotech Launch Pad is the first in a series of Rice Moonshots that are hyper-focused on building a ‘speed and scale’ innovation ecosystem across Houston," Cherukuri says. "We at Rice are committed towards driving the Biotech Launch Pad in collaboration with our partners within the Texas Medical Center and the new Helix Park campus.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Here are 3 Houston innovators to know right now

Innovators to Know

Editor's note: These Houston innovators are making big strides in the fields of neurotechnology, neurodevelopmental diagnosis, and even improving the way we rest and recharge.

For our latest roundup of Innovators to Know, we meet a researcher who is working with teams in Houston and abroad to develop an innovative brain implant; a professor who has created an AI approach to diagnosis; and a local entrepreneur whose brand is poised for major expansion in the coming years.

Jacob Robinson, CEO of Motif Neurotech

Houston startup Motif Neurotech has been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions. Three Rice labs will collaborate with Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery. Learn more.

Dr. Ryan S. Dhindsa, Dhindsa Lab

Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and his team have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa says. Learn more.

Khaliah Guillory, Founder of Nap Bar

From nap research to diversity and inclusion, this entrepreneur is making Houston workers more productiveFrom opening Nap Bar and consulting corporations on diversity and inclusion to serving the city as an LGBT adviser, Khaliah Guillory is focused on productivity. Courtesy of Khaliah Guillory

Khalia Guillory launched her white-glove, eco-friendly rest sanctuary business, Nap Bar, in Houston in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate.

Now she is ready to take it to the next level, with a pivot to VR and plans to expand to 30 locations in three years.

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space. She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth. Learn more.

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."