Intuitive Machines, Rhodium Scientific and San Jacinto College will partner to train future workers for space-based pharma recovery. Photo courtesy Intuitive Machines.

Intuitive Machines, a Houston-based space technology, infrastructure and services company, has forged a partnership with San Jacinto College to develop a program for training workers to handle biopharmaceutical materials delivered to Earth on Intuitive Machines’ re-entry vehicle.

Intuitive Machines is working with biotech company Rhodium Scientific on the project. Rhodium, also based in Houston, is developing biomanufacturing payloads for Intuitive Machines’ re-entry vehicle.

“Delivering life-improving pharmaceuticals from orbit is only valuable with reliable recovery and processes on Earth,” Tim Crain, chief technology officer at Intuitive Machines, said in a news release. “That requires more than a spacecraft — it demands the workforce, facilities, and regulatory alignment to support safe, repeatable operations. San Jacinto College has the credibility and technical depth to make this vision a reality.”

San Jacinto College provides training certified by the National Institute for Bioprocessing Research and Training. Christopher Wild, assistant vice chancellor and vice president of biotechnology at San Jacinto College, said that with this certification and the college’s presence at Houston Spaceport, the school “is uniquely positioned to train the workforce needed (for) commercial space-based pharma recovery.”

The first-phase grant supporting Intuitive Machines’ Earth re-entry program will culminate in a full-scale mockup tailored to real payloads and use cases in early 2026.

Intuitive Machines said the collaborations with San Jacinto College and Rhodium “aim to align future landing infrastructure, research opportunities, and funding pathways that deliver lasting economic impact from space.”

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

Clinical-stage Houston cell therapy company closes $28.4M oversubscribed series A

cha-ching

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

CellChorus created a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. Photo via Getty Images

Houston health tech startup scores $2.5M SBIR grant to advance unique cell therapy AI technology

fresh funding

A Houston biotech company just announced a new award of $2.5 million.

CellChorus, a spinoff of the Single Cell Lab at the University of Houston, announced the fresh funding, which comes from an SBIR (Small Business Innovation Research) grant from the National Institute of Health (NIH) through its National Center for Advancing Translational Sciences (NCATS).

CellChorus is the business behind a technology called TIMING, which stands for Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. This more in-depth knowledge of immune cells could be instrumental in developing novel therapies in countless disorders, including cancers and infectious diseases.

“While many cell therapies have been approved and are in development, the industry needs an integrated analytical platform that provides a matrix of functional readouts, including cell phenotype and metabolism on the same cells over time,” Rebecca Berdeaux, vice president of science at CellChorus, says in a press release. “We are grateful to NCATS for its support of the development of application-specific kits that apply dynamic, functional single-cell analysis of immune cell phenotype and function. The product we will develop will increase the impact of these therapies to improve the lives of patients.”

A two-year, $2.1 million Phase II grant will begin after the company achieves predetermined milestones under a $350,000 Phase I grant that is currently taking place. As Berdeaux explained, the funds will be used to develop TIMING kits which will manufacture analytics that provide end-users with rapid, specific and predictive results to accelerate translational research and the development and manufacture of more effective cell therapies.

TIMING is more than a great idea whose time has yet to come. It has already been proven in great depth. In fact, last June, CellChorus CEO Daniel Meyer told InnovationMap that he was initially attracted to the technology because it was “very well validated.” At the time, CellChorus had just announced a $2.3 million SBIR Fast-Track grant from the National Institute of General Medical Sciences. The company also went on to win an award in the Life Science category of the 2023 Houston Innovation Awards.

That confirmation of success comes from more than 200 peer-reviewed papers that describe myriad cell types and types of therapy, all of which used data from TIMING assays. TIMING data has benefited industry leaders in everything from research and clinical development to manufacturing. With the new grant, TIMING will become more widely available to scientists making important discoveries relating to the inner workings of the cells that drive our immunity.

OncoResponse in partnership with MD Anderson Cancer Center received a portion of $73 million the Cancer Prevention and Research Institute of Texas has doled out this spring. Photo via oncoresponse.com

Seattle biotech co. to move to Houston thanks to $13.3M grant from Texas organization

CPRIT funding spotted

A biotech company has landed a more than $13 million grant from the Cancer Prevention and Research Institute of Texas.

The nearly $13.3 million grant given to OncoResponse — which is relocating from Seattle to Houston, according to CPRIT's news release — will help the company develop fully human monoclonal antibodies for treatment of cancer that otherwise would not respond to immunotherapy. OncoResponse already has a partnership with MD Anderson Cancer Center, which is one of the company’s investors.

“We are thrilled to receive this recognition from CPRIT in supporting the potential of our immunotherapy candidate OR502. We greatly appreciate the additional support from our investors as we continue to make significant progress with our drug development efforts advancing immunotherapies derived from clues of Elite Responders,” says Clifford Stocks, CEO of OncoResponse, in a news release.

Aside from the grant, OncoResponse just hauled in $14 million from existing investors in a round led by RiverVest Venture Partners. Other participants in the series D round include Venture Partners, Canaan Partners, 3B Future Health Fund, Bering Capital, Takeda Ventures, and InterVest Capital Partners.

To date, OncoResponse has raised more than $180 million, according to market research company CB Insights.

A representative of OncoResponse couldn’t be reached for comment about the company’s relocation to Houston.

MD Anderson and Seattle-based Theraclone Sciences launched OncoResponse in 2015. Rice University was among the inaugural investors.

OncoResponse’s OR2805 immunotherapy product is being evaluated in a Phase 1 clinical trial. It’s the company’s leading immunotherapy candidate. OncoResponse is also working on OR502, an antibody being prepared for investigational and clinical studies.

“The modern treatment of cancer activates the body’s own immune system to attack cancer,” OncoResponse says in a summary posted on the website of the Cancer Prevention and Research Institute of Texas (CPRIT).

“These treatments, called immunotherapy, may not be successful if the cancer can recruit bad-acting cells, such as tumor associated macrophages, or TAMs, that create barriers preventing immunotherapies from activating the body’s own defenses against the cancer. To find drugs that may help counteract these TAMs, OncoResponse looked to patients who had responded very well to immunotherapy to see if their bodies made factors to block TAMs and helped them fight their cancers.”

OncoResponse’s OR502 prevents TAMs from shutting down the body’s response to cancer, thus restoring tumor-killing immune activity, CPRIT explains.

In addition to OncoResponse, recent CPRIT grant recipients from the Houston area are:

  • Houston-based 7 Hills Pharma, $13,439,001. The company is working on immunotherapies for treatment of cancer and prevention of infectious diseases.
  • Houston-based Allterum Therapeutics, $11,721,150. The company is coming up with an antibody for treatment of patients with acute lymphoblastic leukemia. This type of cancer affects blood and bone marrow.
  • Houston-based Cell Therapy Manufacturing Center, $9.1 million. The center is a joint venture between National Resilience and MD Anderson Cancer Center that is developing cell therapy manufacturing technologies to support biotech partnerships.
  • Houston-based Pulmotect, $8,851,165. The company’s PUL-042 product is aimed at treating and preventing respiratory complications in cancer patients.
  • Cancer researcher Michael King, $6 million. The grant helped lure King to Rice from Nashville’s Vanderbilt University, where he’s been the chair of biomedical engineering. King’s lab at Vanderbilt has been testing therapies for metastatic breast cancer and prostate cancer.
  • Missouri City-based OmniNano Pharmaceuticals, $2,711,437. The pharmatech company is working on two drugs for treatment of solid tumors in patients with pancreatic cancer.

“Texas is unique because of CPRIT’s ability to invest in cutting-edge research when private capital is scarce. This is yet another way Texas is leading the nation in the fight against cancer,” Wayne Roberts, CEO of CPRIT, says in a news release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”