March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

CellChorus created a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. Photo via Getty Images

Houston health tech startup scores $2.5M SBIR grant to advance unique cell therapy AI technology

fresh funding

A Houston biotech company just announced a new award of $2.5 million.

CellChorus, a spinoff of the Single Cell Lab at the University of Houston, announced the fresh funding, which comes from an SBIR (Small Business Innovation Research) grant from the National Institute of Health (NIH) through its National Center for Advancing Translational Sciences (NCATS).

CellChorus is the business behind a technology called TIMING, which stands for Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. This more in-depth knowledge of immune cells could be instrumental in developing novel therapies in countless disorders, including cancers and infectious diseases.

“While many cell therapies have been approved and are in development, the industry needs an integrated analytical platform that provides a matrix of functional readouts, including cell phenotype and metabolism on the same cells over time,” Rebecca Berdeaux, vice president of science at CellChorus, says in a press release. “We are grateful to NCATS for its support of the development of application-specific kits that apply dynamic, functional single-cell analysis of immune cell phenotype and function. The product we will develop will increase the impact of these therapies to improve the lives of patients.”

A two-year, $2.1 million Phase II grant will begin after the company achieves predetermined milestones under a $350,000 Phase I grant that is currently taking place. As Berdeaux explained, the funds will be used to develop TIMING kits which will manufacture analytics that provide end-users with rapid, specific and predictive results to accelerate translational research and the development and manufacture of more effective cell therapies.

TIMING is more than a great idea whose time has yet to come. It has already been proven in great depth. In fact, last June, CellChorus CEO Daniel Meyer told InnovationMap that he was initially attracted to the technology because it was “very well validated.” At the time, CellChorus had just announced a $2.3 million SBIR Fast-Track grant from the National Institute of General Medical Sciences. The company also went on to win an award in the Life Science category of the 2023 Houston Innovation Awards.

That confirmation of success comes from more than 200 peer-reviewed papers that describe myriad cell types and types of therapy, all of which used data from TIMING assays. TIMING data has benefited industry leaders in everything from research and clinical development to manufacturing. With the new grant, TIMING will become more widely available to scientists making important discoveries relating to the inner workings of the cells that drive our immunity.

OncoResponse in partnership with MD Anderson Cancer Center received a portion of $73 million the Cancer Prevention and Research Institute of Texas has doled out this spring. Photo via oncoresponse.com

Seattle biotech co. to move to Houston thanks to $13.3M grant from Texas organization

CPRIT funding spotted

A biotech company has landed a more than $13 million grant from the Cancer Prevention and Research Institute of Texas.

The nearly $13.3 million grant given to OncoResponse — which is relocating from Seattle to Houston, according to CPRIT's news release — will help the company develop fully human monoclonal antibodies for treatment of cancer that otherwise would not respond to immunotherapy. OncoResponse already has a partnership with MD Anderson Cancer Center, which is one of the company’s investors.

“We are thrilled to receive this recognition from CPRIT in supporting the potential of our immunotherapy candidate OR502. We greatly appreciate the additional support from our investors as we continue to make significant progress with our drug development efforts advancing immunotherapies derived from clues of Elite Responders,” says Clifford Stocks, CEO of OncoResponse, in a news release.

Aside from the grant, OncoResponse just hauled in $14 million from existing investors in a round led by RiverVest Venture Partners. Other participants in the series D round include Venture Partners, Canaan Partners, 3B Future Health Fund, Bering Capital, Takeda Ventures, and InterVest Capital Partners.

To date, OncoResponse has raised more than $180 million, according to market research company CB Insights.

A representative of OncoResponse couldn’t be reached for comment about the company’s relocation to Houston.

MD Anderson and Seattle-based Theraclone Sciences launched OncoResponse in 2015. Rice University was among the inaugural investors.

OncoResponse’s OR2805 immunotherapy product is being evaluated in a Phase 1 clinical trial. It’s the company’s leading immunotherapy candidate. OncoResponse is also working on OR502, an antibody being prepared for investigational and clinical studies.

“The modern treatment of cancer activates the body’s own immune system to attack cancer,” OncoResponse says in a summary posted on the website of the Cancer Prevention and Research Institute of Texas (CPRIT).

“These treatments, called immunotherapy, may not be successful if the cancer can recruit bad-acting cells, such as tumor associated macrophages, or TAMs, that create barriers preventing immunotherapies from activating the body’s own defenses against the cancer. To find drugs that may help counteract these TAMs, OncoResponse looked to patients who had responded very well to immunotherapy to see if their bodies made factors to block TAMs and helped them fight their cancers.”

OncoResponse’s OR502 prevents TAMs from shutting down the body’s response to cancer, thus restoring tumor-killing immune activity, CPRIT explains.

In addition to OncoResponse, recent CPRIT grant recipients from the Houston area are:

  • Houston-based 7 Hills Pharma, $13,439,001. The company is working on immunotherapies for treatment of cancer and prevention of infectious diseases.
  • Houston-based Allterum Therapeutics, $11,721,150. The company is coming up with an antibody for treatment of patients with acute lymphoblastic leukemia. This type of cancer affects blood and bone marrow.
  • Houston-based Cell Therapy Manufacturing Center, $9.1 million. The center is a joint venture between National Resilience and MD Anderson Cancer Center that is developing cell therapy manufacturing technologies to support biotech partnerships.
  • Houston-based Pulmotect, $8,851,165. The company’s PUL-042 product is aimed at treating and preventing respiratory complications in cancer patients.
  • Cancer researcher Michael King, $6 million. The grant helped lure King to Rice from Nashville’s Vanderbilt University, where he’s been the chair of biomedical engineering. King’s lab at Vanderbilt has been testing therapies for metastatic breast cancer and prostate cancer.
  • Missouri City-based OmniNano Pharmaceuticals, $2,711,437. The pharmatech company is working on two drugs for treatment of solid tumors in patients with pancreatic cancer.

“Texas is unique because of CPRIT’s ability to invest in cutting-edge research when private capital is scarce. This is yet another way Texas is leading the nation in the fight against cancer,” Wayne Roberts, CEO of CPRIT, says in a news release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston Spaceport launches $12M expansion for leading space tech co.

to the moon

Houston will get one step closer to the moon, as the Houston Spaceport at Ellington Airport (EFD) has announced an expansion of the lease for Intuitive Machines, the Houston space tech leader dedicated to furthering lunar exploration.

On July 15, the City of Houston announced passage of Amendment 1, which would add three acres of commercial space for Intuitive Machines at the spaceport and a $12 million infrastructure expansion. Approved by the city council and Mayor John Whitmire, the expansion will include new production, testing and support facilities. The amendment extends the current lease for Intuitive Machines from 20 years to 25 years.

"I want to shout out to Intuitive Machines about everything they’re doing at the Houston Spaceport. It’s exciting to see them expand. We’re starting to reach a critical mass out there — more and more aerospace companies want to be at the Spaceport because that’s where innovation is happening,” said Fred Flinkinger, who represents District E on the Houston City Council. “It’s a great sign of momentum, and we’re proud to have them here in Houston."

Intuitive Machines was the first commercial tenant for the Houston Spaceport when it moved into the facility in August 2016. Founded by Stephen Altemus, Kam Ghaffarian, and Tim Crain in 2013, the company holds three contracts with the National Aeronautics and Space Administration (NASA) to deliver payloads to the lunar surface. In 2023, the company opened its doors in Houston with a 105,572-square-foot Lunar Production and Operations Center that contains research and development labs, clean rooms, mission control centers, and a spacecraft assembly floor.


Intuitive Machines landed Odysseus on the moon in February 2024, the first privately owned soft lunar landing ever and the first soft landing since 1972.

The Houston Spaceport is owned and operated by the City of Houston and Houston Airports, who have an eye of keeping the city a prime name in space exploration. As "Houston" was the first word spoken on the moon when Apollo 11 landed in 1969, lunar exploration in particular has a soft place in the heart of the metropolis formerly known as Space City.

“This agreement reinforces Houston’s leadership in space innovation,” said Jim Szczesniak, director of aviation for Houston Airports. “We’re building infrastructure and supporting the next era of lunar and deep space exploration, right here at Houston Spaceport. This partnership represents the forward-thinking development that fuels job creation and drives long-term economic growth.”

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.