According to Houston-based ENGlobal, the company "has more promising opportunities for significant new business than at any time in [the] company's history." Photo via Getty Images

For Houston-based ENGlobal Corp., a provider of engineering and automation services geared toward the energy industry, renewable fuel facilities are a business pipeline gushing with opportunity.

ENGlobal's potential contracts for renewable fuels projects currently exceed $320 million, says Bill Coskey, the company's founder, president, and CEO. That's about six times the amount of ENGlobal's revenue through the first nine months of this year — $52.9 million.

During the company's third-quarter earnings call November 5, Coskey said publicly traded ENGlobal "has more promising opportunities for significant new business than at any time in our company's history."

Many of those opportunities stem from ENGlobal's shift a couple of years ago to a sharp focus on the renewable energy sector. This includes building utility-scale systems to store wind and solar power, and supplying modular engineered process plants for forms of energy like hydrogen and renewable diesel. Modular process plants consist of separately engineered and automated modules that are made off-site and assembled on-site.

"Manufacturing plants based on modular equipment are emerging as a viable and beneficial alternative to conventional stick-built processing plants. Modular equipment offers several benefits, including flexibility in plant siting, fewer safety concerns during construction, and ease of equipment modification," according to the American Institute of Chemical Engineers.

ENGlobal is engineering and fabricating a modular hydrogen plant for a renewal diesel facility scheduled for completion in May. Incorporating proprietary technology from Denmark-based Haldor Topsoe (which has two offices and one plant in the Houston area), this hydrogen plant will consume about 20 percent less feed and fuel than conventional hydrogen plants, leading to lower operating costs and a smaller carbon footprint. It's the first facility of its kind in the U.S. This $25 million project falls into a bucket of modular process plants — valued at $10 million to $200 million each — that ENGlobal typically pursues.

ENGlobal's emphasis on renewable energy is paying off, especially now. That's because this sector is less susceptible to economic harm caused by the coronavirus pandemic and to the downturn in the oil and gas industry, according to Coskey.

"To the contrary, the green and renewable energy sector is driven by a different set of project economics — the majority of which play directly to our core strengths and capabilities," Coskey said during the November 5 earnings call.

ENGlobal comprises two business units that are capitalizing on those core strengths and capabilities:

  • Engineering, procurement, and construction management
  • Automation

Through September 26, the automation segment of the business accounted for 63 percent of the company's revenue this year, with engineering, procurement, and construction at 37 percent. In the third quarter, the balance was roughly 50-50.

For the nine-month period ended September 26, ENGlobal posted a 33 percent increase in revenue compared with the same period a year earlier. Revenue for the period rose 37 percent in the automation segment of the business and 27 percent in the engineering, procurement, and construction management segment.

Looking ahead, Coskey says plants like the one employing the Haldor Topsoe technology are "a big area of growth for us."

"We've built a business which is really vertically integrated. We can engineer and design, we can mechanically fabricate the processing modules, we can automate them, we can go onto the site and start them up. So we have full-service capabilities," Coskey says in an interview.

Those capabilities are helping ENGlobal, which Coskey started in 1985, capitalize on what he dubs the "energy revolution" in the U.S.

"Oil and gas has a long runway and is sometimes not given enough credit," he says. "But I can tell you that the capital spending for traditional oil and gas projects pretty much dried up during the course of this year. And we had to look for other sources of work for our people, so we were fortunate to have these renewable energy projects to work on."

Evercore ESI predicts capital spending on energy exploration and production in the U.S. will fall 43 percent this year compared with 2019. Meanwhile, S&P Global Market Intelligence forecasts $14.26 billion in capital spending this year on renewable energy by major U.S. utilities, up more than 20 percent from an earlier projection for 2020. The share of U.S. electricity generation from renewable energy is expected to increase from 18 percent in 2019 to 20 percent this year and 21 percent in 2021, the U.S. Energy Information Administration says.

"There's a lot of money that used to flow into oil and gas projects that now seems to be flowing into renewable energy projects," Coskey says. "We were lucky to identify that early and be positioned to capture some of that."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."