UTHealth has created a clinic that will provide a myriad of expert physicians for patients still dealing with COVID-19 symptoms. Photo via Getty Images

Houston's first clinic for treatment of patients still coping with symptoms of COVID-19 has opened at UT Physicians, the clinical practice of McGovern Medical School at University of Texas Health Science Center at Houston.

The clinic, part of the new UTHealth COVID-19 Center of Excellence, is staffed by specialists in cardiology, general medicine, neurology, infectious disease, pulmonology, psychiatry, and otorhinolaryngology (ear, nose, and throat). Telehealth and in-person visits are available.

"The UTHealth COVID-19 Center of Excellence brings together our university's experts in adult and pediatric specialty care, public health, biomedical research, and big data analytics — all working to provide the best outcomes for our patients, the best public health and prevention practices for our community, and the best therapies for the virus' short- and long-term impacts," Dr. Giuseppe Colasurdo, president of UTHealth, says in an October 15 release.

Among other things, the COVID-19 Center of Excellence will work on developing reliable testing for the coronavirus, authenticating effective therapies, applying analytics and artificial intelligence to care and research, and collecting virus samples for a "biobank" to study how genetics affects the virus' severity.

Since the emergence of the coronavirus pandemic, scientists and physicians at McGovern Medical School have led clinical trials and treatment protocols, including one of the world's first double-lung transplants for a coronavirus patient. UTHealth is participating in some of the largest national clinical trials to help COVID-19 patients heal, such as studies to prevent progression of the disease and studies seeking proven treatments for critically ill patients.

In one of the country's first randomized clinical trials of its kind, an $8 million grant from the National Institutes of Health is financing a UTHealth study of whether infusions of convalescent plasma can prevent the progression of COVID-19. Another research team is evaluating whether an oral HIF (hypoxia-inducible factor) inhibitor can protect the lungs of COVID-19 patients. The inhibitor is designed to trigger the body's protective response to low oxygen levels.

At the same time, researchers at UTHealth's Cizik School of Nursing are studying the socioeconomic and mental health effects of the virus on Hispanics, while members of the MD Anderson UTHealth Graduate School of Biomedical Sciences are exploring how the time of day a medication is taken might help a COVID-19 patient. In addition, experts at UTHealth's School of Biomedical Informatics are using big data to fight COVID-19.

"Within our six schools, we have the broad expertise that has positioned us as one of the few universities to help our community, Texas and the country through the pandemic and beyond," says Michael Blackburn, executive vice president and chief academic officer of UTHealth. "That starts with amazing clinical care, COVID-19 trials, real-time translational research, and expert knowledge from our public health leaders."

The School of Public Health is leading establishment of a study to be conducted with partners throughout Southeast Texas to assess the virus' long-term consequences, determine factors that contribute to severe outcomes, and enable UTHealth experts to develop and use treatments more effectively. In addition, a community information exchange will be built to connect vulnerable populations with healthcare and social service providers.

"In these unprecedented times, the six schools at UTHealth are rapidly evolving the science and medical care for patients with COVID-19 and our community," says Dr. Bela Patel, vice dean of healthcare quality at McGovern Medical School. "Prevention, new therapeutics, and post-COVID-19 care for our patients with prolonged COVID-19 disease is the mission for the UTHealth Center of Excellence for COVID-19."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.